Rice University, Houston, United States
Abstract:The recent progress in generative AI techniques has significantly influenced software engineering, as AI-driven methods tackle common developer challenges such as code synthesis from descriptions, program repair, and natural language summaries for existing programs. Large-scale language models (LLMs), like OpenAI's Codex, are increasingly adopted in AI-driven software engineering. ChatGPT, another LLM, has gained considerable attention for its potential as a bot for discussing source code, suggesting changes, providing descriptions, and generating code. To evaluate the practicality of LLMs as programming assistant bots, it is essential to examine their performance on unseen problems and various tasks. In our paper, we conduct an empirical analysis of ChatGPT's potential as a fully automated programming assistant, emphasizing code generation, program repair, and code summarization. Our study assesses ChatGPT's performance on common programming problems and compares it to state-of-the-art approaches using two benchmarks. Our research indicates that ChatGPT effectively handles typical programming challenges. However, we also discover the limitations in its attention span: comprehensive descriptions can restrict ChatGPT's focus and impede its ability to utilize its extensive knowledge for problem-solving. Surprisingly, we find that ChatGPT's summary explanations of incorrect code provide valuable insights into the developer's original intentions. This insight can be served as a foundation for future work addressing the oracle problem. Our study offers valuable perspectives on the development of LLMs for programming assistance, specifically by highlighting the significance of prompt engineering and enhancing our comprehension of ChatGPT's practical applications in software engineering.
Abstract:Many COVID-19 patients developed prolonged symptoms after the infection, including fatigue, delirium, and headache. The long-term health impact of these conditions is still not clear. It is necessary to develop a way to follow up with these patients for monitoring their health status to support timely intervention and treatment. In the lack of sufficient human resources to follow up with patients, we propose a novel smart chatbot solution backed with machine learning to collect information (i.e., generating digital diary) in a personalized manner. In this article, we describe the design framework and components of our prototype.