Abstract:Radio signal classification plays a pivotal role in identifying the modulation scheme used in received radio signals, which is essential for demodulation and proper interpretation of the transmitted information. Researchers have underscored the high susceptibility of ML algorithms for radio signal classification to adversarial attacks. Such vulnerability could result in severe consequences, including misinterpretation of critical messages, interception of classified information, or disruption of communication channels. Recent advancements in quantum computing have revolutionized theories and implementations of computation, bringing the unprecedented development of Quantum Machine Learning (QML). It is shown that quantum variational classifiers (QVCs) provide notably enhanced robustness against classical adversarial attacks in image classification. However, no research has yet explored whether QML can similarly mitigate adversarial threats in the context of radio signal classification. This work applies QVCs to radio signal classification and studies their robustness to various adversarial attacks. We also propose the novel application of the approximate amplitude encoding (AAE) technique to encode radio signal data efficiently. Our extensive simulation results present that attacks generated on QVCs transfer well to CNN models, indicating that these adversarial examples can fool neural networks that they are not explicitly designed to attack. However, the converse is not true. QVCs primarily resist the attacks generated on CNNs. Overall, with comprehensive simulations, our results shed new light on the growing field of QML by bridging knowledge gaps in QAML in radio signal classification and uncovering the advantages of applying QML methods in practical applications.
Abstract:Quantum-inspired Machine Learning (QiML) is a burgeoning field, receiving global attention from researchers for its potential to leverage principles of quantum mechanics within classical computational frameworks. However, current review literature often presents a superficial exploration of QiML, focusing instead on the broader Quantum Machine Learning (QML) field. In response to this gap, this survey provides an integrated and comprehensive examination of QiML, exploring QiML's diverse research domains including tensor network simulations, dequantized algorithms, and others, showcasing recent advancements, practical applications, and illuminating potential future research avenues. Further, a concrete definition of QiML is established by analyzing various prior interpretations of the term and their inherent ambiguities. As QiML continues to evolve, we anticipate a wealth of future developments drawing from quantum mechanics, quantum computing, and classical machine learning, enriching the field further. This survey serves as a guide for researchers and practitioners alike, providing a holistic understanding of QiML's current landscape and future directions.
Abstract:A fundamental question in any peer-to-peer ride-sharing system is how to, both effectively and efficiently, meet the request of passengers to balance the supply and demand in real time. On the passenger side, traditional approaches focus on pricing strategies by increasing the probability of users' call to adjust the distribution of demand. However, previous methods do not take into account the impact of changes in strategy on future supply and demand changes, which means drivers are repositioned to different destinations due to passengers' calls, which will affect the driver's income for a period of time in the future. Motivated by this observation, we make an attempt to optimize the distribution of demand to handle this problem by learning the long-term spatio-temporal values as a guideline for pricing strategy. In this study, we propose an offline deep reinforcement learning based method focusing on the demand side to improve the utilization of transportation resources and customer satisfaction. We adopt a spatio-temporal learning method to learn the value of different time and location, then incentivize the ride requests of passengers to adjust the distribution of demand to balance the supply and demand in the system. In particular, we model the problem as a Markov Decision Process (MDP).
Abstract:Recently, Truncated Quantile Critics (TQC), using distributional representation of critics, was shown to provide state-of-the-art asymptotic training performance on all environments from the MuJoCo continuous control benchmark suite. Also recently, Randomized Ensemble Double Q-Learning (REDQ), using a high update-to-data ratio and target randomization, was shown to achieve high sample efficiency that is competitive with state-of-the-art model-based methods. In this paper, we propose a novel model-free algorithm, Aggressive Q-Learning with Ensembles (AQE), which improves the sample-efficiency performance of REDQ and the asymptotic performance of TQC, thereby providing overall state-of-the-art performance during all stages of training. Moreover, AQE is very simple, requiring neither distributional representation of critics nor target randomization.
Abstract:The field of Deep Reinforcement Learning (DRL) has recently seen a surge in research in batch reinforcement learning, which aims for sample-efficient learning from a given data set without additional interactions with the environment. In the batch DRL setting, commonly employed off-policy DRL algorithms can perform poorly and sometimes even fail to learn altogether. In this paper, we propose a new algorithm, Best-Action Imitation Learning (BAIL), which unlike many off-policy DRL algorithms does not involve maximizing Q functions over the action space. Striving for simplicity as well as performance, BAIL first selects from the batch the actions it believes to be high-performing actions for their corresponding states; it then uses those state-action pairs to train a policy network using imitation learning. Although BAIL is simple, we demonstrate that BAIL achieves state of the art performance on the Mujoco benchmark.
Abstract:The field of Deep Reinforcement Learning (DRL) has recently seen a surge in the popularity of maximum entropy reinforcement learning algorithms. Their popularity stems from the intuitive interpretation of the maximum entropy objective and their superior sample efficiency on standard benchmarks. In this paper, we seek to understand the primary contribution of the entropy term to the performance of maximum entropy algorithms. For the Mujoco benchmark, we demonstrate that the entropy term in Soft Actor-Critic (SAC) principally addresses the bounded nature of the action spaces. With this insight, we propose a simple normalization scheme which allows a streamlined algorithm without entropy maximization match the performance of SAC. Our experimental results demonstrate a need to revisit the benefits of entropy regularization in DRL. We also propose a simple non-uniform sampling method for selecting transitions from the replay buffer during training. We further show that the streamlined algorithm with the simple non-uniform sampling scheme outperforms SAC and achieves state-of-the-art performance on challenging continuous control tasks.