Abstract:Monte Carlo Exploring Starts (MCES), which aims to learn the optimal policy using only sample returns, is a simple and natural algorithm in reinforcement learning which has been shown to converge under various conditions. However, the convergence rate analysis for MCES-style algorithms in the form of sample complexity has received very little attention. In this paper we develop a finite sample bound for a modified MCES algorithm which solves the stochastic shortest path problem. To this end, we prove a novel result on the convergence rate of the policy iteration algorithm. This result implies that with probability at least $1-\delta$, the algorithm returns an optimal policy after $\tilde{O}(SAK^3\log^3\frac{1}{\delta})$ sampled episodes, where $S$ and $A$ denote the number of states and actions respectively, $K$ is a proxy for episode length, and $\tilde{O}$ hides logarithmic factors and constants depending on the rewards of the environment that are assumed to be known.
Abstract:Recently it has been observed that neural networks exhibit Neural Collapse (NC) during the final stage of training for the classification problem. We empirically show that multivariate regression, as employed in imitation learning and other applications, exhibits Neural Regression Collapse (NRC), a new form of neural collapse: (NRC1) The last-layer feature vectors collapse to the subspace spanned by the $n$ principal components of the feature vectors, where $n$ is the dimension of the targets (for univariate regression, $n=1$); (NRC2) The last-layer feature vectors also collapse to the subspace spanned by the last-layer weight vectors; (NRC3) The Gram matrix for the weight vectors converges to a specific functional form that depends on the covariance matrix of the targets. After empirically establishing the prevalence of (NRC1)-(NRC3) for a variety of datasets and network architectures, we provide an explanation of these phenomena by modeling the regression task in the context of the Unconstrained Feature Model (UFM), in which the last layer feature vectors are treated as free variables when minimizing the loss function. We show that when the regularization parameters in the UFM model are strictly positive, then (NRC1)-(NRC3) also emerge as solutions in the UFM optimization problem. We also show that if the regularization parameters are equal to zero, then there is no collapse. To our knowledge, this is the first empirical and theoretical study of neural collapse in the context of regression. This extension is significant not only because it broadens the applicability of neural collapse to a new category of problems but also because it suggests that the phenomena of neural collapse could be a universal behavior in deep learning.
Abstract:Label smoothing loss is a widely adopted technique to mitigate overfitting in deep neural networks. This paper studies label smoothing from the perspective of Neural Collapse (NC), a powerful empirical and theoretical framework which characterizes model behavior during the terminal phase of training. We first show empirically that models trained with label smoothing converge faster to neural collapse solutions and attain a stronger level of neural collapse. Additionally, we show that at the same level of NC1, models under label smoothing loss exhibit intensified NC2. These findings provide valuable insights into the performance benefits and enhanced model calibration under label smoothing loss. We then leverage the unconstrained feature model to derive closed-form solutions for the global minimizers for both loss functions and further demonstrate that models under label smoothing have a lower conditioning number and, therefore, theoretically converge faster. Our study, combining empirical evidence and theoretical results, not only provides nuanced insights into the differences between label smoothing and cross-entropy losses, but also serves as an example of how the powerful neural collapse framework can be used to improve our understanding of DNNs.
Abstract:Recently, it has been shown that for offline deep reinforcement learning (DRL), pre-training Decision Transformer with a large language corpus can improve downstream performance (Reid et al., 2022). A natural question to ask is whether this performance gain can only be achieved with language pre-training, or can be achieved with simpler pre-training schemes which do not involve language. In this paper, we first show that language is not essential for improved performance, and indeed pre-training with synthetic IID data for a small number of updates can match the performance gains from pre-training with a large language corpus; moreover, pre-training with data generated by a one-step Markov chain can further improve the performance. Inspired by these experimental results, we then consider pre-training Conservative Q-Learning (CQL), a popular offline DRL algorithm, which is Q-learning-based and typically employs a Multi-Layer Perceptron (MLP) backbone. Surprisingly, pre-training with simple synthetic data for a small number of updates can also improve CQL, providing consistent performance improvement on D4RL Gym locomotion datasets. The results of this paper not only illustrate the importance of pre-training for offline DRL but also show that the pre-training data can be synthetic and generated with remarkably simple mechanisms.
Abstract:In reinforcement learning, Monte Carlo algorithms update the Q function by averaging the episodic returns. In the Monte Carlo UCB (MC-UCB) algorithm, the action taken in each state is the action that maximizes the Q function plus a UCB exploration term, which biases the choice of actions to those that have been chosen less frequently. Although there has been significant work on establishing regret bounds for MC-UCB, most of that work has been focused on finite-horizon versions of the problem, for which each episode terminates after a constant number of steps. For such finite-horizon problems, the optimal policy depends both on the current state and the time within the episode. However, for many natural episodic problems, such as games like Go and Chess and robotic tasks, the episode is of random length and the optimal policy is stationary. For such environments, it is an open question whether the Q-function in MC-UCB will converge to the optimal Q function; we conjecture that, unlike Q-learning, it does not converge for all MDPs. We nevertheless show that for a large class of MDPs, which includes stochastic MDPs such as blackjack and deterministic MDPs such as Go, the Q-function in MC-UCB converges almost surely to the optimal Q function. An immediate corollary of this result is that it also converges almost surely for all finite-horizon MDPs. We also provide numerical experiments, providing further insights into MC-UCB.
Abstract:We propose a simple but powerful data-driven framework for solving highly challenging visual deep reinforcement learning (DRL) tasks. We analyze a number of major obstacles in taking a data-driven approach, and present a suite of design principles, training strategies, and critical insights about data-driven visual DRL. Our framework has three stages: in stage 1, we leverage non-RL datasets (e.g. ImageNet) to learn task-agnostic visual representations; in stage 2, we use offline RL data (e.g. a limited number of expert demonstrations) to convert the task-agnostic representations into more powerful task-specific representations; in stage 3, we fine-tune the agent with online RL. On a set of highly challenging hand manipulation tasks with sparse reward and realistic visual inputs, our framework learns 370%-1200% faster than the previous SOTA method while using an encoder that is 50 times smaller, fully demonstrating the potential of data-driven deep reinforcement learning.
Abstract:Using a high Update-To-Data (UTD) ratio, model-based methods have recently achieved much higher sample efficiency than previous model-free methods for continuous-action DRL benchmarks. In this paper, we introduce a simple model-free algorithm, Randomized Ensembled Double Q-Learning (REDQ), and show that its performance is just as good as, if not better than, a state-of-the-art model-based algorithm for the MuJoCo benchmark. Moreover, REDQ can achieve this performance using fewer parameters than the model-based method, and with less wall-clock run time. REDQ has three carefully integrated ingredients which allow it to achieve its high performance: (i) a UTD ratio >> 1; (ii) an ensemble of Q functions; (iii) in-target minimization across a random subset of Q functions from the ensemble. Through carefully designed experiments, we provide a detailed analysis of REDQ and related model-free algorithms. To our knowledge, REDQ is the first successful model-free DRL algorithm for continuous-action spaces using a UTD ratio >> 1.
Abstract:A simple and natural algorithm for reinforcement learning is Monte Carlo Exploring States (MCES), where the Q-function is estimated by averaging the Monte Carlo returns, and the policy is improved by choosing actions that maximize the current estimate of the Q-function. Exploration is performed by "exploring starts", that is, each episode begins with a randomly chosen state and action and then follows the current policy. Establishing convergence for this algorithm has been an open problem for more than 20 years. We make headway with this problem by proving convergence for Optimal Policy Feed-Forward MDPs, which are MDPs whose states are not revisited within any episode for an optimal policy. Such MDPs include all deterministic environments (including Cliff Walking and other gridworld examples) and a large class of stochastic environments (including Blackjack). The convergence results presented here make progress for this long-standing open problem in reinforcement learning.
Abstract:The field of Deep Reinforcement Learning (DRL) has recently seen a surge in research in batch reinforcement learning, which aims for sample-efficient learning from a given data set without additional interactions with the environment. In the batch DRL setting, commonly employed off-policy DRL algorithms can perform poorly and sometimes even fail to learn altogether. In this paper, we propose a new algorithm, Best-Action Imitation Learning (BAIL), which unlike many off-policy DRL algorithms does not involve maximizing Q functions over the action space. Striving for simplicity as well as performance, BAIL first selects from the batch the actions it believes to be high-performing actions for their corresponding states; it then uses those state-action pairs to train a policy network using imitation learning. Although BAIL is simple, we demonstrate that BAIL achieves state of the art performance on the Mujoco benchmark.
Abstract:The field of Deep Reinforcement Learning (DRL) has recently seen a surge in the popularity of maximum entropy reinforcement learning algorithms. Their popularity stems from the intuitive interpretation of the maximum entropy objective and their superior sample efficiency on standard benchmarks. In this paper, we seek to understand the primary contribution of the entropy term to the performance of maximum entropy algorithms. For the Mujoco benchmark, we demonstrate that the entropy term in Soft Actor-Critic (SAC) principally addresses the bounded nature of the action spaces. With this insight, we propose a simple normalization scheme which allows a streamlined algorithm without entropy maximization match the performance of SAC. Our experimental results demonstrate a need to revisit the benefits of entropy regularization in DRL. We also propose a simple non-uniform sampling method for selecting transitions from the replay buffer during training. We further show that the streamlined algorithm with the simple non-uniform sampling scheme outperforms SAC and achieves state-of-the-art performance on challenging continuous control tasks.