Abstract:Boolean algebraic manipulation is at the core of logic synthesis in Electronic Design Automation (EDA) design flow. Existing methods struggle to fully exploit optimization opportunities, and often suffer from an explosive search space and limited scalability efficiency. This work presents BoolGebra, a novel attributed graph-learning approach for Boolean algebraic manipulation that aims to improve fundamental logic synthesis. BoolGebra incorporates Graph Neural Networks (GNNs) and takes initial feature embeddings from both structural and functional information as inputs. A fully connected neural network is employed as the predictor for direct optimization result predictions, significantly reducing the search space and efficiently locating the optimization space. The experiments involve training the BoolGebra model w.r.t design-specific and cross-design inferences using the trained model, where BoolGebra demonstrates generalizability for cross-design inference and its potential to scale from small, simple training datasets to large, complex inference datasets. Finally, BoolGebra is integrated with existing synthesis tool ABC to perform end-to-end logic minimization evaluation w.r.t SOTA baselines.
Abstract:In this paper, we present GATSPI, a novel GPU accelerated logic gate simulator that enables ultra-fast power estimation for industry sized ASIC designs with millions of gates. GATSPI is written in PyTorch with custom CUDA kernels for ease of coding and maintainability. It achieves simulation kernel speedup of up to 1668X on a single-GPU system and up to 7412X on a multiple-GPU system when compared to a commercial gate-level simulator running on a single CPU core. GATSPI supports a range of simple to complex cell types from an industry standard cell library and SDF conditional delay statements without requiring prior calibration runs and produces industry-standard SAIF files from delay-aware gate-level simulation. Finally, we deploy GATSPI in a glitch-optimization flow, achieving a 1.4% power saving with a 449X speedup in turnaround time compared to a similar flow using a commercial simulator.
Abstract:The novel corona virus (Covid-19) has introduced significant challenges due to its rapid spreading nature through respiratory transmission. As a result, there is a huge demand for Artificial Intelligence (AI) based quick disease diagnosis methods as an alternative to high demand tests such as Polymerase Chain Reaction (PCR). Chest X-ray (CXR) Image analysis is such cost-effective radiography technique due to resource availability and quick screening. But, a sufficient and systematic data collection that is required by complex deep leaning (DL) models is more difficult and hence there are recent efforts that utilize transfer learning to address this issue. Still these transfer learnt models suffer from lack of generalization and increased bias to the training dataset resulting poor performance for unseen data. Limited correlation of the transferred features from the pre-trained model to a specific medical imaging domain like X-ray and overfitting on fewer data can be reasons for this circumstance. In this work, we propose a novel Graph Convolution Neural Network (GCN) that is capable of identifying bio-markers of Covid-19 pneumonia from CXR images and meta information about patients. The proposed method exploits important relational knowledge between data instances and their features using graph representation and applies convolution to learn the graph data which is not possible with conventional convolution on Euclidean domain. The results of extensive experiments of proposed model on binary (Covid vs normal) and three class (Covid, normal, other pneumonia) classification problems outperform different benchmark transfer learnt models, hence overcoming the aforementioned drawbacks.
Abstract:Design flow parameters are of utmost importance to chip design quality and require a painfully long time to evaluate their effects. In reality, flow parameter tuning is usually performed manually based on designers' experience in an ad hoc manner. In this work, we introduce a machine learning-based automatic parameter tuning methodology that aims to find the best design quality with a limited number of trials. Instead of merely plugging in machine learning engines, we develop clustering and approximate sampling techniques for improving tuning efficiency. The feature extraction in this method can reuse knowledge from prior designs. Furthermore, we leverage a state-of-the-art XGBoost model and propose a novel dynamic tree technique to overcome overfitting. Experimental results on benchmark circuits show that our approach achieves 25% improvement in design quality or 37% reduction in sampling cost compared to random forest method, which is the kernel of a highly cited previous work. Our approach is further validated on two industrial designs. By sampling less than 0.02% of possible parameter sets, it reduces area by 1.83% and 1.43% compared to the best solutions hand-tuned by experienced designers.
Abstract:Graphs can be used to effectively represent complex data structures. Learning these irregular data in graphs is challenging and still suffers from shallow learning. Applying deep learning on graphs has recently showed good performance in many applications in social analysis, bioinformatics etc. A message passing graph convolution network is such a powerful method which has expressive power to learn graph structures. Meanwhile, circRNA is a type of non-coding RNA which plays a critical role in human diseases. Identifying the associations between circRNAs and diseases is important to diagnosis and treatment of complex diseases. However, there are limited number of known associations between them and conducting biological experiments to identify new associations is time consuming and expensive. As a result, there is a need of building efficient and feasible computation methods to predict potential circRNA-disease associations. In this paper, we propose a novel graph convolution network framework to learn features from a graph built with multi-source similarity information to predict circRNA-disease associations. First we use multi-source information of circRNA similarity, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity to extract the features using first graph convolution. Then we predict disease associations for each circRNA with second graph convolution. Proposed framework with five-fold cross validation on various experiments shows promising results in predicting circRNA-disease association and outperforms other existing methods.
Abstract:An optimal dynamic treatment regime (DTR) consists of a sequence of decision rules in maximizing long-term benefits, which is applicable for chronic diseases such as HIV infection or cancer. In this paper, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. The proposed method targets maximization the conditional survival function of patients following a DTR. In contrast to most existing approaches which are designed to maximize the expected survival time under a binary treatment framework, the proposed method solves the multicategory treatment problem given multiple stages for censored data. Specifically, the proposed method obtains the optimal DTR via integrating estimations of decision rules at multiple stages into a single multicategory classification algorithm without imposing additional constraints, which is also more computationally efficient and robust. In theory, we establish Fisher consistency of the proposed method under regularity conditions. Our numerical studies show that the proposed method outperforms competing methods in terms of maximizing the conditional survival function. We apply the proposed method to two real datasets: Framingham heart study data and acquired immunodeficiency syndrome (AIDS) clinical data.
Abstract:In recent days, Convolutional Neural Networks (CNN) have demonstrated impressive performance in medical image analysis. However, there is a lack of clear understanding of why and how the Convolutional Neural Network performs so well for image analysis task. How CNN analyzes an image and discriminates among samples of different classes are usually considered as non-transparent. As a result, it becomes difficult to apply CNN based approaches in clinical procedures and automated disease diagnosis systems. In this paper, we consider this issue and work on visualizing and understanding the decision of Convolutional Neural Network for Alzheimer's Disease (AD) Diagnosis. We develop a 3D deep convolutional neural network for AD diagnosis using brain PET scans and propose using five visualizations techniques - Sensitivity Analysis (Backpropagation), Guided Backpropagation, Occlusion, Brain Area Occlusion, and Layer-wise Relevance Propagation (LRP) to understand the decision of the CNN by highlighting the relevant areas in the PET data.
Abstract:Hospital Readmissions within 30 days after discharge following Coronary Artery Bypass Graft (CABG) Surgery are substantial contributors to healthcare costs. Many predictive models were developed to identify risk factors for readmissions. However, majority of the existing models use statistical analysis techniques with data available at discharge. We propose an ensembled model to predict CABG readmissions using pre-discharge perioperative data and machine learning survival analysis techniques. Firstly, we applied fifty one potential readmission risk variables to Cox Proportional Hazard (CPH) survival regression univariate analysis. Fourteen of them turned out to be significant (with p value < 0.05), contributing to readmissions. Subsequently, we applied these 14 predictors to multivariate CPH model and Deep Learning Neural Network (NN) representation of the CPH model, DeepSurv. We validated this new ensembled model with 453 isolated adult CABG cases. Nine of the fourteen perioperative risk variables were identified as the most significant with Hazard Ratios (HR) of greater than 1.0. The concordance index metrics for CPH, DeepSurv, and ensembled models were then evaluated with training and validation datasets. Our ensembled model yielded promising results in terms of c-statistics, as we raised the the number of iterations and data set sizes. 30 day all-cause readmissions among isolated CABG patients can be predicted more effectively with perioperative pre-discharge data, using machine learning survival analysis techniques. Prediction accuracy levels could be improved further with deep learning algorithms.
Abstract:Automated segmentation of Lungs plays a crucial role in the computer-aided diagnosis of chest X-Ray (CXR) images. Developing an efficient Lung segmentation model is challenging because of difficulties such as the presence of several edges at the rib cage and clavicle, inconsistent lung shape among different individuals, and the appearance of the lung apex. In this paper, we propose a robust model for Lung segmentation in Chest Radiographs. Our model learns to ignore the irrelevant regions in an input Chest Radiograph while highlighting regions useful for lung segmentation. The proposed model is evaluated on two public chest X-Ray datasets (Montgomery County, MD, USA, and Shenzhen No. 3 People's Hospital in China). The experimental result with a DICE score of 98.6% demonstrates the robustness of our proposed lung segmentation approach.
Abstract:Alzheimer's Disease destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. It is a severe neurological brain disorder which is not curable, but earlier detection of Alzheimer's Disease can help for proper treatment and to prevent brain tissue damage. Detection and classification of Alzheimer's Disease (AD) is challenging because sometimes the signs that distinguish Alzheimer's Disease MRI data can be found in normal healthy brain MRI data of older people. Moreover, there are relatively small amount of dataset available to train the automated Alzheimer's Disease detection and classification model. In this paper, we present a novel Alzheimer's Disease detection and classification model using brain MRI data analysis. We develop an ensemble of deep convolutional neural networks and demonstrate superior performance on the Open Access Series of Imaging Studies (OASIS) dataset.