Abstract:In recent days, Convolutional Neural Networks (CNN) have demonstrated impressive performance in medical image analysis. However, there is a lack of clear understanding of why and how the Convolutional Neural Network performs so well for image analysis task. How CNN analyzes an image and discriminates among samples of different classes are usually considered as non-transparent. As a result, it becomes difficult to apply CNN based approaches in clinical procedures and automated disease diagnosis systems. In this paper, we consider this issue and work on visualizing and understanding the decision of Convolutional Neural Network for Alzheimer's Disease (AD) Diagnosis. We develop a 3D deep convolutional neural network for AD diagnosis using brain PET scans and propose using five visualizations techniques - Sensitivity Analysis (Backpropagation), Guided Backpropagation, Occlusion, Brain Area Occlusion, and Layer-wise Relevance Propagation (LRP) to understand the decision of the CNN by highlighting the relevant areas in the PET data.
Abstract:Automated segmentation of Lungs plays a crucial role in the computer-aided diagnosis of chest X-Ray (CXR) images. Developing an efficient Lung segmentation model is challenging because of difficulties such as the presence of several edges at the rib cage and clavicle, inconsistent lung shape among different individuals, and the appearance of the lung apex. In this paper, we propose a robust model for Lung segmentation in Chest Radiographs. Our model learns to ignore the irrelevant regions in an input Chest Radiograph while highlighting regions useful for lung segmentation. The proposed model is evaluated on two public chest X-Ray datasets (Montgomery County, MD, USA, and Shenzhen No. 3 People's Hospital in China). The experimental result with a DICE score of 98.6% demonstrates the robustness of our proposed lung segmentation approach.
Abstract:Alzheimer's Disease destroys brain cells causing people to lose their memory, mental functions and ability to continue daily activities. It is a severe neurological brain disorder which is not curable, but earlier detection of Alzheimer's Disease can help for proper treatment and to prevent brain tissue damage. Detection and classification of Alzheimer's Disease (AD) is challenging because sometimes the signs that distinguish Alzheimer's Disease MRI data can be found in normal healthy brain MRI data of older people. Moreover, there are relatively small amount of dataset available to train the automated Alzheimer's Disease detection and classification model. In this paper, we present a novel Alzheimer's Disease detection and classification model using brain MRI data analysis. We develop an ensemble of deep convolutional neural networks and demonstrate superior performance on the Open Access Series of Imaging Studies (OASIS) dataset.