Abstract:Co-optimizing placement with congestion is integral to achieving high-quality designs. This paper presents GOALPlace, a new learning-based general approach to improving placement congestion by controlling cell density. Our method efficiently learns from an EDA tool's post-route optimized results and uses an empirical Bayes technique to adapt this goal/target to a specific placer's solutions, effectively beginning with the end in mind. It enhances correlation with the long-running heuristics of the tool's router and timing-opt engine -- while solving placement globally without expensive incremental congestion estimation and mitigation methods. A statistical analysis with a new hierarchical netlist clustering establishes the importance of density and the potential for an adequate cell density target across placements. Our experiments show that our method, integrated as a demonstration inside an academic GPU-accelerated global placer, consistently produces macro and standard cell placements of superior or comparable quality to commercial tools. Our empirical Bayes methodology also allows a substantial quality improvement over state-of-the-art academic mixed-size placers, achieving up to 10x fewer design rule check (DRC) violations, a 5% decrease in wirelength, and a 30% and 60% reduction in worst and total negative slack (WNS/TNS).
Abstract:Exploding predictive AI has enabled fast yet effective evaluation and decision-making in modern chip physical design flows. State-of-the-art frameworks typically include the objective of minimizing the mean square error (MSE) between the prediction and the ground truth. We argue the averaging effect of MSE induces limitations in both model training and deployment, and good MSE behavior does not guarantee the capability of these models to assist physical design flows which are likely sabotaged due to a small portion of prediction error. To address this, we propose mini-pixel batch gradient descent (MPGD), a plug-and-play optimization algorithm that takes the most informative entries into consideration, offering probably faster and better convergence. Experiments on representative benchmark suits show the significant benefits of MPGD on various physical design prediction tasks using CNN or Graph-based models.
Abstract:Boolean algebraic manipulation is at the core of logic synthesis in Electronic Design Automation (EDA) design flow. Existing methods struggle to fully exploit optimization opportunities, and often suffer from an explosive search space and limited scalability efficiency. This work presents BoolGebra, a novel attributed graph-learning approach for Boolean algebraic manipulation that aims to improve fundamental logic synthesis. BoolGebra incorporates Graph Neural Networks (GNNs) and takes initial feature embeddings from both structural and functional information as inputs. A fully connected neural network is employed as the predictor for direct optimization result predictions, significantly reducing the search space and efficiently locating the optimization space. The experiments involve training the BoolGebra model w.r.t design-specific and cross-design inferences using the trained model, where BoolGebra demonstrates generalizability for cross-design inference and its potential to scale from small, simple training datasets to large, complex inference datasets. Finally, BoolGebra is integrated with existing synthesis tool ABC to perform end-to-end logic minimization evaluation w.r.t SOTA baselines.