Abstract:Instruction tuning is crucial for enabling Language Learning Models (LLMs) in responding to human instructions. The quality of instruction pairs used for tuning greatly affects the performance of LLMs. However, the manual creation of high-quality instruction datasets is costly, leading to the adoption of automatic generation of instruction pairs by LLMs as a popular alternative in the training of open-source LLMs. To ensure the high quality of LLM-generated instruction datasets, several approaches have been proposed. Nevertheless, existing methods either compromise dataset integrity by filtering a large proportion of samples, or are unsuitable for industrial applications. In this paper, instead of discarding low-quality samples, we propose CoachLM, a novel approach to enhance the quality of instruction datasets through automatic revisions on samples in the dataset. CoachLM is trained from the samples revised by human experts and significantly increases the proportion of high-quality samples in the dataset from 17.7% to 78.9%. The effectiveness of CoachLM is further assessed on various real-world instruction test sets. The results show that CoachLM improves the instruction-following capabilities of the instruction-tuned LLM by an average of 29.9%, which even surpasses larger LLMs with nearly twice the number of parameters. Furthermore, CoachLM is successfully deployed in a data management system for LLMs at Huawei, resulting in an efficiency improvement of up to 20% in the cleaning of 40k real-world instruction pairs. We release the training data and code of CoachLM (https://github.com/lunyiliu/CoachLM).
Abstract:Automated log analysis is crucial in modern software-intensive systems for ensuring reliability and resilience throughout software maintenance and engineering life cycles. Existing methods perform tasks such as log parsing and log anomaly detection by providing a single prediction value without interpretation. However, given the increasing volume of system events, the limited interpretability of analysis results hinders analysts' trust and their ability to take appropriate actions. Moreover, these methods require substantial in-domain training data, and their performance declines sharply (by up to 62.5%) in online scenarios involving unseen logs from new domains, a common occurrence due to rapid software updates. In this paper, we propose LogPrompt, a novel zero-shot and interpretable log analysis approach. LogPrompt employs large language models (LLMs) to perform zero-shot log analysis tasks via a suite of advanced prompt strategies tailored for log tasks, which enhances LLMs' performance by up to 107.5% compared with simple prompts. Experiments on nine publicly available evaluation datasets across two tasks demonstrate that LogPrompt, despite using no training data, outperforms existing approaches trained on thousands of logs by up to around 50%. We also conduct a human evaluation of LogPrompt's interpretability, with six practitioners possessing over 10 years of experience, who highly rated the generated content in terms of usefulness and readability (averagely 4.42/5). LogPrompt also exhibits remarkable compatibility with open-source and smaller-scale LLMs, making it flexible for practical deployment.
Abstract:Cross-lingual Machine Translation (MT) quality estimation plays a crucial role in evaluating translation performance. GEMBA, the first MT quality assessment metric based on Large Language Models (LLMs), employs one-step prompting to achieve state-of-the-art (SOTA) in system-level MT quality estimation; however, it lacks segment-level analysis. In contrast, Chain-of-Thought (CoT) prompting outperforms one-step prompting by offering improved reasoning and explainability. In this paper, we introduce Knowledge-Prompted Estimator (KPE), a CoT prompting method that combines three one-step prompting techniques, including perplexity, token-level similarity, and sentence-level similarity. This method attains enhanced performance for segment-level estimation compared with previous deep learning models and one-step prompting approaches. Furthermore, supplementary experiments on word-level visualized alignment demonstrate that our KPE method significantly improves token alignment compared with earlier models and provides better interpretability for MT quality estimation. Code will be released upon publication.
Abstract:In the burgeoning field of artificial intelligence (AI), understanding the capabilities and limitations of programming-oriented models is crucial. This paper presents a novel evaluation of the programming proficiency of Generative Pretrained Transformer (GPT) models, specifically GPT-3.5 and GPT-4, against coding problems of varying difficulty levels drawn from Codewars. The experiments reveal a distinct boundary at the 3kyu level, beyond which these GPT models struggle to provide solutions. These findings led to the proposal of a measure for coding problem complexity that incorporates both problem difficulty and the time required for solution. The research emphasizes the need for validation and creative thinking capabilities in AI models to better emulate human problem-solving techniques. Future work aims to refine this proposed complexity measure, enhance AI models with these suggested capabilities, and develop an objective measure for programming problem difficulty. The results of this research offer invaluable insights for improving AI programming capabilities and advancing the frontier of AI problem-solving abilities.