Abstract:Accurate phenotypic analysis in aquaculture breeding necessitates the quantification of subtle morphological phenotypes. Existing datasets suffer from limitations such as small scale, limited species coverage, and inadequate annotation of keypoints for measuring refined and complex morphological phenotypes of fish body parts. To address this gap, we introduce FishPhenoKey, a comprehensive dataset comprising 23,331 high-resolution images spanning six fish species. Notably, FishPhenoKey includes 22 phenotype-oriented annotations, enabling the capture of intricate morphological phenotypes. Motivated by the nuanced evaluation of these subtle morphologies, we also propose a new evaluation metric, Percentage of Measured Phenotype (PMP). It is designed to assess the accuracy of individual keypoint positions and is highly sensitive to the phenotypes measured using the corresponding keypoints. To enhance keypoint detection accuracy, we further propose a novel loss, Anatomically-Calibrated Regularization (ACR), that can be integrated into keypoint detection models, leveraging biological insights to refine keypoint localization. Our contributions set a new benchmark in fish phenotype analysis, addressing the challenges of precise morphological quantification and opening new avenues for research in sustainable aquaculture and genetic studies. Our dataset and code are available at https://github.com/WeizhenLiuBioinform/Fish-Phenotype-Detect.
Abstract:Hierarchical leaf vein segmentation is a crucial but under-explored task in agricultural sciences, where analysis of the hierarchical structure of plant leaf venation can contribute to plant breeding. While current segmentation techniques rely on data-driven models, there is no publicly available dataset specifically designed for hierarchical leaf vein segmentation. To address this gap, we introduce the HierArchical Leaf Vein Segmentation (HALVS) dataset, the first public hierarchical leaf vein segmentation dataset. HALVS comprises 5,057 real-scanned high-resolution leaf images collected from three plant species: soybean, sweet cherry, and London planetree. It also includes human-annotated ground truth for three orders of leaf veins, with a total labeling effort of 83.8 person-days. Based on HALVS, we further develop a label-efficient learning paradigm that leverages partial label information, i.e. missing annotations for tertiary veins. Empirical studies are performed on HALVS, revealing new observations, challenges, and research directions on leaf vein segmentation.
Abstract:The robustness of unmanned aerial vehicle (UAV) tracking is crucial in many tasks like surveillance and robotics. Despite its importance, little attention is paid to the performance of UAV trackers under common corruptions due to lack of a dedicated platform. Addressing this, we propose UAV-C, a large-scale benchmark for assessing robustness of UAV trackers under common corruptions. Specifically, UAV-C is built upon two popular UAV datasets by introducing 18 common corruptions from 4 representative categories including adversarial, sensor, blur, and composite corruptions in different levels. Finally, UAV-C contains more than 10K sequences. To understand the robustness of existing UAV trackers against corruptions, we extensively evaluate 12 representative algorithms on UAV-C. Our study reveals several key findings: 1) Current trackers are vulnerable to corruptions, indicating more attention needed in enhancing the robustness of UAV trackers; 2) When accompanying together, composite corruptions result in more severe degradation to trackers; and 3) While each tracker has its unique performance profile, some trackers may be more sensitive to specific corruptions. By releasing UAV-C, we hope it, along with comprehensive analysis, serves as a valuable resource for advancing the robustness of UAV tracking against corruption. Our UAV-C will be available at https://github.com/Xiaoqiong-Liu/UAV-C.
Abstract:High-resolution aerial imagery allows fine details in the segmentation of farmlands. However, small objects and features introduce distortions to the delineation of object boundaries, and larger contextual views are needed to mitigate class confusion. In this work, we present an end-to-end trainable network for segmenting farmlands with contour levees from high-resolution aerial imagery. A fusion block is devised that includes multiple voting blocks to achieve image segmentation and classification. We integrate the fusion block with a backbone and produce both semantic predictions and segmentation slices. The segmentation slices are used to perform majority voting on the predictions. The network is trained to assign the most likely class label of a segment to its pixels, learning the concept of farmlands rather than analyzing constitutive pixels separately. We evaluate our method using images from the National Agriculture Imagery Program. Our method achieved an average accuracy of 94.34\%. Compared to the state-of-the-art methods, the proposed method obtains an improvement of 6.96% and 2.63% in the F1 score on average.
Abstract:Most deep learning backbones are evaluated on ImageNet. Using scenery images as an example, we conducted extensive experiments to demonstrate the widely accepted principles in network design may result in dramatic performance differences when the data is altered. Exploratory experiments are engaged to explain the underlining cause of the differences. Based on our observation, this paper presents a novel network design methodology: data-oriented network design. In other words, instead of designing universal backbones, the scheming of the networks should treat the characteristics of data as a crucial component. We further proposed a Deep-Narrow Network and Dilated Pooling module, which improved the scene recognition performance using less than half of the computational resources compared to the benchmark network architecture ResNets. The source code is publicly available on https://github.com/ZN-Qiao/Deep-Narrow-Network.
Abstract:Urban regions are complicated functional systems that are closely associated with and reshaped by human activities. The propagation of online geographic information-sharing platforms and mobile devices equipped with Global Positioning System (GPS) greatly proliferates proximate sensing images taken near or on the ground at a close distance to urban targets. Studies leveraging proximate sensing imagery have demonstrated great potential to address the need for local data in urban land-use analysis. This paper reviews and summarizes the state-of-the-art methods and publicly available datasets from proximate sensing to support land-use analysis. We identify several research problems in the perspective of examples to support training of models and means of integrating diverse data sets. Our discussions highlight the challenges, strategies, and opportunities faced by the existing methods using proximate sensing imagery in urban land-use studies.
Abstract:Electrocardiogram (ECG) is a widely used reliable, non-invasive approach for cardiovascular disease diagnosis. With the rapid growth of ECG examinations and the insufficiency of cardiologists, accurate and automatic diagnosis of ECG signals has become a hot research topic. Deep learning methods have demonstrated promising results in predictive healthcare tasks. In this paper, we developed a deep neural network for multi-label classification of cardiac arrhythmias in 12-lead ECG recordings. Experiments on a public 12-lead ECG dataset showed the effectiveness of our method. The proposed model achieved an average area under the receiver operating characteristic curve (AUC) of 0.970 and an average F1 score of 0.813. The deep model showed superior performance than 4 machine learning methods learned from extracted expert features. Besides, the deep models trained on single-lead ECGs produce lower performance than using all 12 leads simultaneously. The best-performing leads are lead I, aVR, and V5 among 12 leads. Finally, we employed the SHapley Additive exPlanations (SHAP) method to interpret the model's behavior at both patient level and population level. Our code is freely available at https://github.com/onlyzdd/ecg-diagnosis.
Abstract:Although Generative Adversarial Networks have shown remarkable performance in image generation, there are some challenges in image realism and convergence speed. The results of some models display the imbalances of quality within a generated image, in which some defective parts appear compared with other regions. Different from general single global optimization methods, we introduce an adaptive global and local bilevel optimization model(GL-GAN). The model achieves the generation of high-resolution images in a complementary and promoting way, where global optimization is to optimize the whole images and local is only to optimize the low-quality areas. With a simple network structure, GL-GAN is allowed to effectively avoid the nature of imbalance by local bilevel optimization, which is accomplished by first locating low-quality areas and then optimizing them. Moreover, by using feature map cues from discriminator output, we propose the adaptive local and global optimization method(Ada-OP) for specific implementation and find that it boosts the convergence speed. Compared with the current GAN methods, our model has shown impressive performance on CelebA, CelebA-HQ and LSUN datasets.
Abstract:Exterior contour and interior structure are both vital features for classifying objects. However, most of the existing methods consider exterior contour feature and internal structure feature separately, and thus fail to function when classifying patchy image structures that have similar contours and flexible structures. To address above limitations, this paper proposes a novel Multi-Orientation Region Transform (MORT), which can effectively characterize both contour and structure features simultaneously, for patchy image structure classification. MORT is performed over multiple orientation regions at multiple scales to effectively integrate patchy features, and thus enables a better description of the shape in a coarse-to-fine manner. Moreover, the proposed MORT can be extended to combine with the deep convolutional neural network techniques, for further enhancement of classification accuracy. Very encouraging experimental results on the challenging ultra-fine-grained cultivar recognition task, insect wing recognition task, and large variation butterfly recognition task are obtained, which demonstrate the effectiveness and superiority of the proposed MORT over the state-of-the-art methods in classifying patchy image structures. Our code and three patchy image structure datasets are available at: https://github.com/XiaohanYu-GU/MReT2019.
Abstract:Leaf image recognition techniques have been actively researched for plant species identification. However it remains unclear whether leaf patterns can provide sufficient information for cultivar recognition. This paper reports the first attempt on soybean cultivar recognition from plant leaves which is not only a challenging research problem but also important for soybean cultivar evaluation, selection and production in agriculture. In this paper, we propose a novel multiscale sliding chord matching (MSCM) approach to extract leaf patterns that are distinctive for soybean cultivar identification. A chord is defined to slide along the contour for measuring the synchronised patterns of exterior shape and interior appearance of soybean leaf images. A multiscale sliding chord strategy is developed to extract features in a coarse-to-fine hierarchical order. A joint description that integrates the leaf descriptors from different parts of a soybean plant is proposed for further enhancing the discriminative power of cultivar description. We built a cultivar leaf image database, SoyCultivar, consisting of 1200 sample leaf images from 200 soybean cultivars for performance evaluation. Encouraging experimental results of the proposed method in comparison to the state-of-the-art leaf species recognition methods demonstrate the availability of cultivar information in soybean leaves and effectiveness of the proposed MSCM for soybean cultivar identification, which may advance the research in leaf recognition from species to cultivar.