Abstract:Hierarchical leaf vein segmentation is a crucial but under-explored task in agricultural sciences, where analysis of the hierarchical structure of plant leaf venation can contribute to plant breeding. While current segmentation techniques rely on data-driven models, there is no publicly available dataset specifically designed for hierarchical leaf vein segmentation. To address this gap, we introduce the HierArchical Leaf Vein Segmentation (HALVS) dataset, the first public hierarchical leaf vein segmentation dataset. HALVS comprises 5,057 real-scanned high-resolution leaf images collected from three plant species: soybean, sweet cherry, and London planetree. It also includes human-annotated ground truth for three orders of leaf veins, with a total labeling effort of 83.8 person-days. Based on HALVS, we further develop a label-efficient learning paradigm that leverages partial label information, i.e. missing annotations for tertiary veins. Empirical studies are performed on HALVS, revealing new observations, challenges, and research directions on leaf vein segmentation.
Abstract:360{\deg} spherical images have advantages of wide view field, and are typically projected on a planar plane for processing, which is known as equirectangular image. The object shape in equirectangular images can be distorted and lack translation invariance. In addition, there are few publicly dataset of equirectangular images with labels, which presents a challenge for standard CNNs models to process equirectangular images effectively. To tackle this problem, we propose a methodology for converting a perspective image into equirectangular image. The inverse transformation of the spherical center projection and the equidistant cylindrical projection are employed. This enables the standard CNNs to learn the distortion features at different positions in the equirectangular image and thereby gain the ability to semantically the equirectangular image. The parameter, {\phi}, which determines the projection position of the perspective image, has been analyzed using various datasets and models, such as UNet, UNet++, SegNet, PSPNet, and DeepLab v3+. The experiments demonstrate that an optimal value of {\phi} for effective semantic segmentation of equirectangular images is 6{\pi}/16 for standard CNNs. Compared with the other three types of methods (supervised learning, unsupervised learning and data augmentation), the method proposed in this paper has the best average IoU value of 43.76%. This value is 23.85%, 10.7% and 17.23% higher than those of other three methods, respectively.