Urban regions are complicated functional systems that are closely associated with and reshaped by human activities. The propagation of online geographic information-sharing platforms and mobile devices equipped with Global Positioning System (GPS) greatly proliferates proximate sensing images taken near or on the ground at a close distance to urban targets. Studies leveraging proximate sensing imagery have demonstrated great potential to address the need for local data in urban land-use analysis. This paper reviews and summarizes the state-of-the-art methods and publicly available datasets from proximate sensing to support land-use analysis. We identify several research problems in the perspective of examples to support training of models and means of integrating diverse data sets. Our discussions highlight the challenges, strategies, and opportunities faced by the existing methods using proximate sensing imagery in urban land-use studies.