Abstract:Model interpretability in toxicity detection greatly profits from token-level annotations. However, currently such annotations are only available in English. We introduce a dataset annotated for offensive language detection sourced from a news forum, notable for its incorporation of the Austrian German dialect, comprising 4,562 user comments. In addition to binary offensiveness classification, we identify spans within each comment constituting vulgar language or representing targets of offensive statements. We evaluate fine-tuned language models as well as large language models in a zero- and few-shot fashion. The results indicate that while fine-tuned models excel in detecting linguistic peculiarities such as vulgar dialect, large language models demonstrate superior performance in detecting offensiveness in AustroTox. We publish the data and code.
Abstract:Pretrained language models underpin several AI applications, but their high computational cost for training limits accessibility. Initiatives such as BLOOM and StarCoder aim to democratize access to pretrained models for collaborative community development. However, such existing models face challenges: limited multilingual capabilities, continual pretraining causing catastrophic forgetting, whereas pretraining from scratch is computationally expensive, and compliance with AI safety and development laws. This paper presents Aurora-M, a 15B parameter multilingual open-source model trained on English, Finnish, Hindi, Japanese, Vietnamese, and code. Continually pretrained from StarCoderPlus on 435 billion additional tokens, Aurora-M surpasses 2 trillion tokens in total training token count. It is the first open-source multilingual model fine-tuned on human-reviewed safety instructions, thus aligning its development not only with conventional red-teaming considerations, but also with the specific concerns articulated in the Biden-Harris Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. Aurora-M is rigorously evaluated across various tasks and languages, demonstrating robustness against catastrophic forgetting and outperforming alternatives in multilingual settings, particularly in safety evaluations. To promote responsible open-source LLM development, Aurora-M and its variants are released at https://huggingface.co/collections/aurora-m/aurora-m-models-65fdfdff62471e09812f5407 .
Abstract:Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMeD, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMeD serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMeD-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMeD, we conduct experiments and establish baselines on new datasets.
Abstract:Keeping up with research and finding related work is still a time-consuming task for academics. Researchers sift through thousands of studies to identify a few relevant ones. Automation techniques can help by increasing the efficiency and effectiveness of this task. To this end, we developed CRUISE-Screening, a web-based application for conducting living literature reviews - a type of literature review that is continuously updated to reflect the latest research in a particular field. CRUISE-Screening is connected to several search engines via an API, which allows for updating the search results periodically. Moreover, it can facilitate the process of screening for relevant publications by using text classification and question answering models. CRUISE-Screening can be used both by researchers conducting literature reviews and by those working on automating the citation screening process to validate their algorithms. The application is open-source: https://github.com/ProjectDoSSIER/cruise-screening, and a demo is available under this URL: https://citation-screening.ec.tuwien.ac.at. We discuss the limitations of our tool in Appendix A.
Abstract:Clinical trials (CTs) often fail due to inadequate patient recruitment. This paper tackles the challenges of CT retrieval by presenting an approach that addresses the patient-to-trials paradigm. Our approach involves two key components in a pipeline-based model: (i) a data enrichment technique for enhancing both queries and documents during the first retrieval stage, and (ii) a novel re-ranking schema that uses a Transformer network in a setup adapted to this task by leveraging the structure of the CT documents. We use named entity recognition and negation detection in both patient description and the eligibility section of CTs. We further classify patient descriptions and CT eligibility criteria into current, past, and family medical conditions. This extracted information is used to boost the importance of disease and drug mentions in both query and index for lexical retrieval. Furthermore, we propose a two-step training schema for the Transformer network used to re-rank the results from the lexical retrieval. The first step focuses on matching patient information with the descriptive sections of trials, while the second step aims to determine eligibility by matching patient information with the criteria section. Our findings indicate that the inclusion criteria section of the CT has a great influence on the relevance score in lexical models, and that the enrichment techniques for queries and documents improve the retrieval of relevant trials. The re-ranking strategy, based on our training schema, consistently enhances CT retrieval and shows improved performance by 15\% in terms of precision at retrieving eligible trials. The results of our experiments suggest the benefit of making use of extracted entities. Moreover, our proposed re-ranking schema shows promising effectiveness compared to larger neural models, even with limited training data.
Abstract:Current methods of evaluating search strategies and automated citation screening for systematic literature reviews typically rely on counting the number of relevant and not relevant publications. This established practice, however, does not accurately reflect the reality of conducting a systematic review, because not all included publications have the same influence on the final outcome of the systematic review. More specifically, if an important publication gets excluded or included, this might significantly change the overall review outcome, while not including or excluding less influential studies may only have a limited impact. However, in terms of evaluation measures, all inclusion and exclusion decisions are treated equally and, therefore, failing to retrieve publications with little to no impact on the review outcome leads to the same decrease in recall as failing to retrieve crucial publications. We propose a new evaluation framework that takes into account the impact of the reported study on the overall systematic review outcome. We demonstrate the framework by extracting review meta-analysis data and estimating outcome effects using predictions from ranking runs on systematic reviews of interventions from CLEF TAR 2019 shared task. We further measure how closely the obtained outcomes are to the outcomes of the original review if the arbitrary rankings were used. We evaluate 74 runs using the proposed framework and compare the results with those obtained using standard IR measures. We find that accounting for the difference in review outcomes leads to a different assessment of the quality of a system than if traditional evaluation measures were used. Our analysis provides new insights into the evaluation of retrieval results in the context of systematic review automation, emphasising the importance of assessing the usefulness of each document beyond binary relevance.
Abstract:We discuss our experiments for COLIEE Task 1, a court case retrieval competition using cases from the Federal Court of Canada. During experiments on the training data we observe that passage level retrieval with rank fusion outperforms document level retrieval. By explicitly adding extracted statute information to the queries and documents we can further improve the results. We submit two passage level runs to the competition, which achieve high recall but low precision.
Abstract:Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
Abstract:Training and evaluating language models increasingly requires the construction of meta-datasets --diverse collections of curated data with clear provenance. Natural language prompting has recently lead to improved zero-shot generalization by transforming existing, supervised datasets into a diversity of novel pretraining tasks, highlighting the benefits of meta-dataset curation. While successful in general-domain text, translating these data-centric approaches to biomedical language modeling remains challenging, as labeled biomedical datasets are significantly underrepresented in popular data hubs. To address this challenge, we introduce BigBIO a community library of 126+ biomedical NLP datasets, currently covering 12 task categories and 10+ languages. BigBIO facilitates reproducible meta-dataset curation via programmatic access to datasets and their metadata, and is compatible with current platforms for prompt engineering and end-to-end few/zero shot language model evaluation. We discuss our process for task schema harmonization, data auditing, contribution guidelines, and outline two illustrative use cases: zero-shot evaluation of biomedical prompts and large-scale, multi-task learning. BigBIO is an ongoing community effort and is available at https://github.com/bigscience-workshop/biomedical
Abstract:User intent classification is an important task in information retrieval. In this work, we introduce a revised taxonomy of user intent. We take the widely used differentiation between navigational, transactional and informational queries as a starting point, and identify three different sub-classes for the informational queries: instrumental, factual and abstain. The resulting classification of user queries is more fine-grained, reaches a high level of consistency between annotators, and can serve as the basis for an effective automatic classification process. The newly introduced categories help distinguish between types of queries that a retrieval system could act upon, for example by prioritizing different types of results in the ranking.We have used a weak supervision approach based on Snorkel to annotate the ORCAS dataset according to our new user intent taxonomy, utilising established heuristics and keywords to construct rules for the prediction of the intent category. We then present a series of experiments with a variety of machine learning models, using the labels from the weak supervision stage as training data, but find that the results produced by Snorkel are not outperformed by these competing approaches and can be considered state-of-the-art. The advantage of a rule-based approach like Snorkel's is its efficient deployment in an actual system, where intent classification would be executed for every query issued. The resource released with this paper is the ORCAS-I dataset: a labelled version of the ORCAS click-based dataset of Web queries, which provides 18 million connections to 10 million distinct queries.