Abstract:Grasping is essential in robotic manipulation, yet challenging due to object and gripper diversity and real-world complexities. Traditional analytic approaches often have long optimization times, while data-driven methods struggle with unseen objects. This paper formulates the problem as a rigid shape matching between gripper and object, which optimizes with Annealed Stein Iterative Closest Point (AS-ICP) and leverages GPU-based parallelization. By incorporating the gripper's tool center point and the object's center of mass into the cost function and using a signed distance field of the gripper for collision checking, our method achieves robust grasps with low computational time. Experiments with the Kinova KG3 gripper show an 87.3% success rate and 0.926 s computation time across various objects and settings, highlighting its potential for real-world applications.
Abstract:Existing works on coreference resolution suggest that task-specific models are necessary to achieve state-of-the-art performance. In this work, we present compelling evidence that such models are not necessary. We finetune a pretrained seq2seq transformer to map an input document to a tagged sequence encoding the coreference annotation. Despite the extreme simplicity, our model outperforms or closely matches the best coreference systems in the literature on an array of datasets. We also propose an especially simple seq2seq approach that generates only tagged spans rather than the spans interleaved with the original text. Our analysis shows that the model size, the amount of supervision, and the choice of sequence representations are key factors in performance.
Abstract:In multitask retrieval, a single retriever is trained to retrieve relevant contexts for multiple tasks. Despite its practical appeal, naive multitask retrieval lags behind task-specific retrieval in which a separate retriever is trained for each task. We show that it is possible to train a multitask retriever that outperforms task-specific retrievers by promoting task specialization. The main ingredients are: (1) a better choice of pretrained model (one that is explicitly optimized for multitasking) along with compatible prompting, and (2) a novel adaptive learning method that encourages each parameter to specialize in a particular task. The resulting multitask retriever is highly performant on the KILT benchmark. Upon analysis, we find that the model indeed learns parameters that are more task-specialized compared to naive multitasking without prompting or adaptive learning.
Abstract:A conventional approach to entity linking is to first find mentions in a given document and then infer their underlying entities in the knowledge base. A well-known limitation of this approach is that it requires finding mentions without knowing their entities, which is unnatural and difficult. We present a new model that does not suffer from this limitation called EntQA, which stands for Entity linking as Question Answering. EntQA first proposes candidate entities with a fast retrieval module, and then scrutinizes the document to find mentions of each candidate with a powerful reader module. Our approach combines progress in entity linking with that in open-domain question answering and capitalizes on pretrained models for dense entity retrieval and reading comprehension. Unlike in previous works, we do not rely on a mention-candidates dictionary or large-scale weak supervision. EntQA achieves strong results on the GERBIL benchmarking platform.
Abstract:The choice of negative examples is important in noise contrastive estimation. Recent works find that hard negatives -- highest-scoring incorrect examples under the model -- are effective in practice, but they are used without a formal justification. We develop analytical tools to understand the role of hard negatives. Specifically, we view the contrastive loss as a biased estimator of the gradient of the cross-entropy loss, and show both theoretically and empirically that setting the negative distribution to be the model distribution results in bias reduction. We also derive a general form of the score function that unifies various architectures used in text retrieval. By combining hard negatives with appropriate score functions, we obtain strong results on the challenging task of zero-shot entity linking.