Abstract:The glyphic writing system of Chinese incorporates information-rich visual features in each character, such as radicals that provide hints about meaning or pronunciation. However, there has been no investigation into whether contemporary Large Language Models (LLMs) and Vision-Language Models (VLMs) can harness these sub-character features in Chinese through prompting. In this study, we establish a benchmark to evaluate LLMs' and VLMs' understanding of visual elements in Chinese characters, including radicals, composition structures, strokes, and stroke counts. Our results reveal that models surprisingly exhibit some, but still limited, knowledge of the visual information, regardless of whether images of characters are provided. To incite models' ability to use radicals, we further experiment with incorporating radicals into the prompts for Chinese language understanding tasks. We observe consistent improvement in Part-Of-Speech tagging when providing additional information about radicals, suggesting the potential to enhance CLP by integrating sub-character information.
Abstract:Fine-tuning is dismissed as not effective for model editing due to its poor performance compared to more specialized methods. However, fine-tuning is simple, agnostic to the architectural details of the model being edited, and able to leverage ongoing advances in standard training methods (e.g., PEFT), making it an appealing choice for a model editor. In this work, we show that pure fine-tuning can be a viable approach to model editing. We propose a slight modification of naive fine-tuning with two key ingredients. First, we optimize the conditional likelihood rather than the full likelihood. Second, we augment the data with random paraphrases and facts to encourage generalization and locality. Our experiments on ZsRE and CounterFact show that this simple modification allows fine-tuning to often match or outperform specialized editors in the edit score.
Abstract:Existing works on coreference resolution suggest that task-specific models are necessary to achieve state-of-the-art performance. In this work, we present compelling evidence that such models are not necessary. We finetune a pretrained seq2seq transformer to map an input document to a tagged sequence encoding the coreference annotation. Despite the extreme simplicity, our model outperforms or closely matches the best coreference systems in the literature on an array of datasets. We also propose an especially simple seq2seq approach that generates only tagged spans rather than the spans interleaved with the original text. Our analysis shows that the model size, the amount of supervision, and the choice of sequence representations are key factors in performance.
Abstract:In multitask retrieval, a single retriever is trained to retrieve relevant contexts for multiple tasks. Despite its practical appeal, naive multitask retrieval lags behind task-specific retrieval in which a separate retriever is trained for each task. We show that it is possible to train a multitask retriever that outperforms task-specific retrievers by promoting task specialization. The main ingredients are: (1) a better choice of pretrained model (one that is explicitly optimized for multitasking) along with compatible prompting, and (2) a novel adaptive learning method that encourages each parameter to specialize in a particular task. The resulting multitask retriever is highly performant on the KILT benchmark. Upon analysis, we find that the model indeed learns parameters that are more task-specialized compared to naive multitasking without prompting or adaptive learning.
Abstract:A conventional approach to entity linking is to first find mentions in a given document and then infer their underlying entities in the knowledge base. A well-known limitation of this approach is that it requires finding mentions without knowing their entities, which is unnatural and difficult. We present a new model that does not suffer from this limitation called EntQA, which stands for Entity linking as Question Answering. EntQA first proposes candidate entities with a fast retrieval module, and then scrutinizes the document to find mentions of each candidate with a powerful reader module. Our approach combines progress in entity linking with that in open-domain question answering and capitalizes on pretrained models for dense entity retrieval and reading comprehension. Unlike in previous works, we do not rely on a mention-candidates dictionary or large-scale weak supervision. EntQA achieves strong results on the GERBIL benchmarking platform.
Abstract:The choice of negative examples is important in noise contrastive estimation. Recent works find that hard negatives -- highest-scoring incorrect examples under the model -- are effective in practice, but they are used without a formal justification. We develop analytical tools to understand the role of hard negatives. Specifically, we view the contrastive loss as a biased estimator of the gradient of the cross-entropy loss, and show both theoretically and empirically that setting the negative distribution to be the model distribution results in bias reduction. We also derive a general form of the score function that unifies various architectures used in text retrieval. By combining hard negatives with appropriate score functions, we obtain strong results on the challenging task of zero-shot entity linking.
Abstract:Biomedical entity linking is the task of identifying mentions of biomedical concepts in text documents and mapping them to canonical entities in a target thesaurus. Recent advancements in entity linking using BERT-based models follow a retrieve and rerank paradigm, where the candidate entities are first selected using a retriever model, and then the retrieved candidates are ranked by a reranker model. While this paradigm produces state-of-the-art results, they are slow both at training and test time as they can process only one mention at a time. To mitigate these issues, we propose a BERT-based dual encoder model that resolves multiple mentions in a document in one shot. We show that our proposed model is multiple times faster than existing BERT-based models while being competitive in accuracy for biomedical entity linking. Additionally, we modify our dual encoder model for end-to-end biomedical entity linking that performs both mention span detection and entity disambiguation and out-performs two recently proposed models.
Abstract:We propose to tackle conditional text generation tasks, especially those which require generating formulaic text, by splicing together segments of text from retrieved "neighbor" source-target pairs. Unlike recent work that conditions on retrieved neighbors in an encoder-decoder setting but generates text token-by-token, left-to-right, we learn a policy that directly manipulates segments of neighbor text (i.e., by inserting or replacing them) to form an output. Standard techniques for training such a policy require an oracle derivation for each generation, and we prove that finding the shortest such derivation can be reduced to parsing under a particular weighted context-free grammar. We find that policies learned in this way allow for interpretable table-to-text or headline generation that is competitive with neighbor-based token-level policies on automatic metrics, though on all but one dataset neighbor-based policies underperform a strong neighborless baseline. In all cases, however, generating by splicing is faster.
Abstract:It is a common belief in the NLP community that continuous bag-of-words (CBOW) word embeddings tend to underperform skip-gram (SG) embeddings. We find that this belief is founded less on theoretical differences in their training objectives but more on faulty CBOW implementations in standard software libraries such as the official implementation word2vec.c and Gensim. We show that our correct implementation of CBOW yields word embeddings that are fully competitive with SG on various intrinsic and extrinsic tasks while being more than three times as fast to train. We release our implementation, k\=oan, at https://github.com/bloomberg/koan.
Abstract:Dataless text classification is capable of classifying documents into previously unseen labels by assigning a score to any document paired with a label description. While promising, it crucially relies on accurate descriptions of the label set for each downstream task. This reliance causes dataless classifiers to be highly sensitive to the choice of label descriptions and hinders the broader application of dataless classification in practice. In this paper, we ask the following question: how can we improve dataless text classification using the inputs of the downstream task dataset? Our primary solution is a clustering based approach. Given a dataless classifier, our approach refines its set of predictions using k-means clustering. We demonstrate the broad applicability of our approach by improving the performance of two widely used classifier architectures, one that encodes text-category pairs with two independent encoders and one with a single joint encoder. Experiments show that our approach consistently improves dataless classification across different datasets and makes the classifier more robust to the choice of label descriptions.