Abstract:Most statistical machine translation systems cannot translate words that are unseen in the training data. However, humans can translate many classes of out-of-vocabulary (OOV) words (e.g., novel morphological variants, misspellings, and compounds) without context by using orthographic clues. Following this observation, we describe and evaluate several general methods for OOV translation that use only subword information. We pose the OOV translation problem as a standalone task and intrinsically evaluate our approaches on fourteen typologically diverse languages across varying resource levels. Adding OOV translators to a statistical machine translation system yields consistent BLEU gains (0.5 points on average, and up to 2.0) for all fourteen languages, especially in low-resource scenarios.
Abstract:We present a parser for Abstract Meaning Representation (AMR). We treat English-to-AMR conversion within the framework of string-to-tree, syntax-based machine translation (SBMT). To make this work, we transform the AMR structure into a form suitable for the mechanics of SBMT and useful for modeling. We introduce an AMR-specific language model and add data and features drawn from semantic resources. Our resulting AMR parser improves upon state-of-the-art results by 7 Smatch points.