Abstract:Robust real-time perception of 3D world is essential to the autonomous vehicle. We introduce an end-to-end surround camera perception system for self-driving. Our perception system is a novel multi-task, multi-camera network which takes a variable set of time-synced camera images as input and produces a rich collection of 3D signals such as sizes, orientations, locations of obstacles, parking spaces and free-spaces, etc. Our perception network is modular and end-to-end: 1) the outputs can be consumed directly by downstream modules without any post-processing such as clustering and fusion -- improving speed of model deployment and in-car testing 2) the whole network training is done in one single stage -- improving speed of model improvement and iterations. The network is well designed to have high accuracy while running at 53 fps on NVIDIA Orin SoC (system-on-a-chip). The network is robust to sensor mounting variations (within some tolerances) and can be quickly customized for different vehicle types via efficient model fine-tuning thanks of its capability of taking calibration parameters as additional inputs during training and testing. Most importantly, our network has been successfully deployed and being tested on real roads.
Abstract:It has been a long history that most object detection methods obtain objects by using the non-maximum suppression (NMS) and its improved versions like Soft-NMS to remove redundant bounding boxes. We challenge those NMS-based methods from three aspects: 1) The bounding box with highest confidence value may not be the true positive having the biggest overlap with the ground-truth box. 2) Not only suppression is required for redundant boxes, but also confidence enhancement is needed for those true positives. 3) Sorting candidate boxes by confidence values is not necessary so that full parallelism is achievable. In this paper, inspired by belief propagation (BP), we propose the Confidence Propagation Cluster (CP-Cluster) to replace NMS-based methods, which is fully parallelizable as well as better in accuracy. In CP-Cluster, we borrow the message passing mechanism from BP to penalize redundant boxes and enhance true positives simultaneously in an iterative way until convergence. We verified the effectiveness of CP-Cluster by applying it to various mainstream detectors such as FasterRCNN, SSD, FCOS, YOLOv3, YOLOv5, Centernet etc. Experiments on MS COCO show that our plug and play method, without retraining detectors, is able to steadily improve average mAP of all those state-of-the-art models with a clear margin from 0.2 to 1.9 respectively when compared with NMS-based methods. Source code is available at https://github.com/shenyi0220/CP-Cluster