IMT Atlantique, Brest, France
Abstract:The predominant method for computing confidence intervals (CI) in few-shot learning (FSL) is based on sampling the tasks with replacement, i.e.\ allowing the same samples to appear in multiple tasks. This makes the CI misleading in that it takes into account the randomness of the sampler but not the data itself. To quantify the extent of this problem, we conduct a comparative analysis between CIs computed with and without replacement. These reveal a notable underestimation by the predominant method. This observation calls for a reevaluation of how we interpret confidence intervals and the resulting conclusions in FSL comparative studies. Our research demonstrates that the use of paired tests can partially address this issue. Additionally, we explore methods to further reduce the (size of the) CI by strategically sampling tasks of a specific size. We also introduce a new optimized benchmark, which can be accessed at https://github.com/RafLaf/FSL-benchmark-again
Abstract:We consider the problem of zero-shot one-class visual classification. In this setting, only the label of the target class is available, and the goal is to discriminate between positive and negative query samples without requiring any validation example from the target task. We propose a two-step solution that first queries large language models for visually confusing objects and then relies on vision-language pre-trained models (e.g., CLIP) to perform classification. By adapting large-scale vision benchmarks, we demonstrate the ability of the proposed method to outperform adapted off-the-shelf alternatives in this setting. Namely, we propose a realistic benchmark where negative query samples are drawn from the same original dataset as positive ones, including a granularity-controlled version of iNaturalist, where negative samples are at a fixed distance in the taxonomy tree from the positive ones. Our work shows that it is possible to discriminate between a single category and other semantically related ones using only its label
Abstract:In the context of Brain-Computer Interfaces, we propose an adaptive method that reaches offline performance level while being usable online without requiring supervision. Interestingly, our method does not require retraining the model, as it consists in using a frozen efficient deep learning backbone while continuously realigning data, both at input and latent spaces, based on streaming observations. We demonstrate its efficiency for Motor Imagery brain decoding from electroencephalography data, considering challenging cross-subject scenarios. For reproducibility, we share the code of our experiments.
Abstract:In classification, it is usual to observe that models trained on a given set of classes can generalize to previously unseen ones, suggesting the ability to learn beyond the initial task. This ability is often leveraged in the context of transfer learning where a pretrained model can be used to process new classes, with or without fine tuning. Surprisingly, there are a few papers looking at the theoretical roots beyond this phenomenon. In this work, we are interested in laying the foundations of such a theoretical framework for transferability between sets of classes. Namely, we establish a partially ordered set of subsets of classes. This tool allows to represent which subset of classes can generalize to others. In a more practical setting, we explore the ability of our framework to predict which subset of classes can lead to the best performance when testing on all of them. We also explore few-shot learning, where transfer is the golden standard. Our work contributes to better understanding of transfer mechanics and model generalization.
Abstract:When training data is scarce, it is common to make use of a feature extractor that has been pre-trained on a large base dataset, either by fine-tuning its parameters on the ``target'' dataset or by directly adopting its representation as features for a simple classifier. Fine-tuning is ineffective for few-shot learning, since the target dataset contains only a handful of examples. However, directly adopting the features without fine-tuning relies on the base and target distributions being similar enough that these features achieve separability and generalization. This paper investigates whether better features for the target dataset can be obtained by training on fewer base classes, seeking to identify a more useful base dataset for a given task.We consider cross-domain few-shot image classification in eight different domains from Meta-Dataset and entertain multiple real-world settings (domain-informed, task-informed and uninformed) where progressively less detail is known about the target task. To our knowledge, this is the first demonstration that fine-tuning on a subset of carefully selected base classes can significantly improve few-shot learning. Our contributions are simple and intuitive methods that can be implemented in any few-shot solution. We also give insights into the conditions in which these solutions are likely to provide a boost in accuracy. We release the code to reproduce all experiments from this paper on GitHub. https://github.com/RafLaf/Few-and-Fewer.git
Abstract:In recent years, the rapid evolution of computer vision has seen the emergence of various vision foundation models, each tailored to specific data types and tasks. While large language models often share a common pretext task, the diversity in vision foundation models arises from their varying training objectives. In this study, we delve into the quest for identifying the most effective vision foundation models for few-shot semantic segmentation, a critical task in computer vision. Specifically, we conduct a comprehensive comparative analysis of four prominent foundation models: DINO V2, Segment Anything, CLIP, Masked AutoEncoders, and a straightforward ResNet50 pre-trained on the COCO dataset. Our investigation focuses on their adaptability to new semantic segmentation tasks, leveraging only a limited number of segmented images. Our experimental findings reveal that DINO V2 consistently outperforms the other considered foundation models across a diverse range of datasets and adaptation methods. This outcome underscores DINO V2's superior capability to adapt to semantic segmentation tasks compared to its counterparts. Furthermore, our observations indicate that various adapter methods exhibit similar performance, emphasizing the paramount importance of selecting a robust feature extractor over the intricacies of the adaptation technique itself. This insight sheds light on the critical role of feature extraction in the context of few-shot semantic segmentation. This research not only contributes valuable insights into the comparative performance of vision foundation models in the realm of few-shot semantic segmentation but also highlights the significance of a robust feature extractor in this domain.
Abstract:In the realm of few-shot learning, foundation models like CLIP have proven effective but exhibit limitations in cross-domain robustness especially in few-shot settings. Recent works add text as an extra modality to enhance the performance of these models. Most of these approaches treat text as an auxiliary modality without fully exploring its potential to elucidate the underlying class visual features distribution. In this paper, we present a novel approach that leverages text-derived statistics to predict the mean and covariance of the visual feature distribution for each class. This predictive framework enriches the latent space, yielding more robust and generalizable few-shot learning models. We demonstrate the efficacy of incorporating both mean and covariance statistics in improving few-shot classification performance across various datasets. Our method shows that we can use text to predict the mean and covariance of the distribution offering promising improvements in few-shot learning scenarios.
Abstract:Pruning is a compression method which aims to improve the efficiency of neural networks by reducing their number of parameters while maintaining a good performance, thus enhancing the performance-to-cost ratio in nontrivial ways. Of particular interest are structured pruning techniques, in which whole portions of parameters are removed altogether, resulting in easier to leverage shrunk architectures. Since its growth in popularity in the recent years, pruning gave birth to countless papers and contributions, resulting first in critical inconsistencies in the way results are compared, and then to a collective effort to establish standardized benchmarks. However, said benchmarks are based on training practices that date from several years ago and do not align with current practices. In this work, we verify how results in the recent literature of pruning hold up against networks that underwent both state-of-the-art training methods and trivial model scaling. We find that the latter clearly and utterly outperform all the literature we compared to, proving that updating standard pruning benchmarks and re-evaluating classical methods in their light is an absolute necessity. We thus introduce a new challenging baseline to compare structured pruning to: ThinResNet.
Abstract:We propose EEG-SimpleConv, a straightforward 1D convolutional neural network for Motor Imagery decoding in BCI. Our main motivation is to propose a very simple baseline to compare to, using only very standard ingredients from the literature. We evaluate its performance on four EEG Motor Imagery datasets, including simulated online setups, and compare it to recent Deep Learning and Machine Learning approaches. EEG-SimpleConv is at least as good or far more efficient than other approaches, showing strong knowledge-transfer capabilities across subjects, at the cost of a low inference time. We advocate that using off-the-shelf ingredients rather than coming with ad-hoc solutions can significantly help the adoption of Deep Learning approaches for BCI. We make the code of the models and the experiments accessible.
Abstract:The field of visual few-shot classification aims at transferring the state-of-the-art performance of deep learning visual systems onto tasks where only a very limited number of training samples are available. The main solution consists in training a feature extractor using a large and diverse dataset to be applied to the considered few-shot task. Thanks to the encoded priors in the feature extractors, classification tasks with as little as one example (or "shot'') for each class can be solved with high accuracy, even when the shots display individual features not representative of their classes. Yet, the problem becomes more complicated when some of the given shots display multiple objects. In this paper, we present a strategy which aims at detecting the presence of multiple and previously unseen objects in a given shot. This methodology is based on identifying the corners of a simplex in a high dimensional space. We introduce an optimization routine and showcase its ability to successfully detect multiple (previously unseen) objects in raw images. Then, we introduce a downstream classifier meant to exploit the presence of multiple objects to improve the performance of few-shot classification, in the case of extreme settings where only one shot is given for its class. Using standard benchmarks of the field, we show the ability of the proposed method to slightly, yet statistically significantly, improve accuracy in these settings.