Abstract:Large language models (LLMs) have demonstrated strong capabilities in solving a wide range of programming tasks. However, LLMs have rarely been explored for code optimization. In this paper, we explore code optimization with a focus on performance enhancement, specifically aiming to optimize code for minimal execution time. The recently proposed first PIE dataset for performance optimization constructs program optimization pairs based on iterative submissions from the same programmer for the same problem. However, this approach restricts LLMs to local performance improvements, neglecting global algorithmic innovation. Therefore, we adopt a completely different perspective by reconstructing the optimization pairs into a problem-oriented approach. This allows for the integration of various ingenious ideas from different programmers tackling the same problem. Experimental results demonstrate that adapting LLMs to problem-oriented optimization pairs significantly enhances their optimization capabilities. Meanwhile, we identified performance bottlenecks within the problem-oriented perspective. By employing model merge, we further overcame bottlenecks and ultimately elevated the program optimization ratio ($51.76\%\rightarrow76.65\%$) and speedup ($2.65\times\rightarrow5.09\times$) to new levels.
Abstract:Large Language Models (LLMs) have exhibited remarkable proficiency in generating code. However, the misuse of LLM-generated (Synthetic) code has prompted concerns within both educational and industrial domains, highlighting the imperative need for the development of synthetic code detectors. Existing methods for detecting LLM-generated content are primarily tailored for general text and often struggle with code content due to the distinct grammatical structure of programming languages and massive "low-entropy" tokens. Building upon this, our work proposes a novel zero-shot synthetic code detector based on the similarity between the code and its rewritten variants. Our method relies on the intuition that the differences between the LLM-rewritten and original codes tend to be smaller when the original code is synthetic. We utilize self-supervised contrastive learning to train a code similarity model and assess our approach on two synthetic code detection benchmarks. Our results demonstrate a notable enhancement over existing synthetic content detectors designed for general texts, with an improvement of 20.5% in the APPS benchmark and 29.1% in the MBPP benchmark.
Abstract:Decreased myocardial capillary density has been reported as an important histopathological feature associated with various heart disorders. Quantitative assessment of cardiac capillarization typically involves double immunostaining of cardiomyocytes (CMs) and capillaries in myocardial slices. In contrast, single immunostaining of basement membrane components is a straightforward approach to simultaneously label CMs and capillaries, presenting fewer challenges in background staining. However, subsequent image analysis always requires manual work in identifying and segmenting CMs and capillaries. Here, we developed an image analysis tool, AutoQC, to automatically identify and segment CMs and capillaries in immunofluorescence images of collagen type IV, a predominant basement membrane protein within the myocardium. In addition, commonly used capillarization-related measurements can be derived from segmentation masks. AutoQC features a weakly supervised instance segmentation algorithm by leveraging the power of a pre-trained segmentation model via prompt engineering. AutoQC outperformed YOLOv8-Seg, a state-of-the-art instance segmentation model, in both instance segmentation and capillarization assessment. Furthermore, the training of AutoQC required only a small dataset with bounding box annotations instead of pixel-wise annotations, leading to a reduced workload during network training. AutoQC provides an automated solution for quantifying cardiac capillarization in basement-membrane-immunostained myocardial slices, eliminating the need for manual image analysis once it is trained.
Abstract:Automatically generating function summaries for binaries is an extremely valuable but challenging task, since it involves translating the execution behavior and semantics of the low-level language (assembly code) into human-readable natural language. However, most current works on understanding assembly code are oriented towards generating function names, which involve numerous abbreviations that make them still confusing. To bridge this gap, we focus on generating complete summaries for binary functions, especially for stripped binary (no symbol table and debug information in reality). To fully exploit the semantics of assembly code, we present a control flow graph and pseudo code guided binary code summarization framework called CP-BCS. CP-BCS utilizes a bidirectional instruction-level control flow graph and pseudo code that incorporates expert knowledge to learn the comprehensive binary function execution behavior and logic semantics. We evaluate CP-BCS on 3 different binary optimization levels (O1, O2, and O3) for 3 different computer architectures (X86, X64, and ARM). The evaluation results demonstrate CP-BCS is superior and significantly improves the efficiency of reverse engineering.
Abstract:Automatically generating human-readable text describing the functionality of a program is the intent of source code summarization. Although Neural Language Models achieve significant performance in this field, an emerging trend is combining neural models with external knowledge. Most previous approaches rely on the sentence-level retrieval and combination paradigm (retrieval of similar code snippets and use of the corresponding code and summary pairs) on the encoder side. However, this paradigm is coarse-grained and cannot directly take advantage of the high-quality retrieved summary tokens on the decoder side. In this paper, we explore a fine-grained token-level retrieval-augmented mechanism on the decoder side to help the vanilla neural model generate a better code summary. Furthermore, to mitigate the limitation of token-level retrieval on capturing contextual code semantics, we propose to integrate code semantics into summary tokens. Extensive experiments and human evaluation reveal that our token-level retrieval-augmented approach significantly improves performance and is more interpretive.
Abstract:Deep neural retrieval models have amply demonstrated their power but estimating the reliability of their predictions remains challenging. Most dialog response retrieval models output a single score for a response on how relevant it is to a given question. However, the bad calibration of deep neural network results in various uncertainty for the single score such that the unreliable predictions always misinform user decisions. To investigate these issues, we present an efficient calibration and uncertainty estimation framework PG-DRR for dialog response retrieval models which adds a Gaussian Process layer to a deterministic deep neural network and recovers conjugacy for tractable posterior inference by P\'{o}lya-Gamma augmentation. Finally, PG-DRR achieves the lowest empirical calibration error (ECE) in the in-domain datasets and the distributional shift task while keeping $R_{10}@1$ and MAP performance.
Abstract:Deep neural networks have achieved remarkable performance in retrieval-based dialogue systems, but they are shown to be ill calibrated. Though basic calibration methods like Monte Carlo Dropout and Ensemble can calibrate well, these methods are time-consuming in the training or inference stages. To tackle these challenges, we propose an efficient uncertainty calibration framework GPF-BERT for BERT-based conversational search, which employs a Gaussian Process layer and the focal loss on top of the BERT architecture to achieve a high-quality neural ranker. Extensive experiments are conducted to verify the effectiveness of our method. In comparison with basic calibration methods, GPF-BERT achieves the lowest empirical calibration error (ECE) in three in-domain datasets and the distributional shift tasks, while yielding the highest $R_{10}@1$ and MAP performance on most cases. In terms of time consumption, our GPF-BERT has an 8$\times$ speedup.
Abstract:Although deep Neural Networks (DNNs) have achieved tremendous success in audio classification tasks, their uncertainty calibration are still under-explored. A well-calibrated model should be accurate when it is certain about its prediction and indicate high uncertainty when it is likely to be inaccurate. In this work, we investigate the uncertainty calibration for deep audio classifiers. In particular, we empirically study the performance of popular calibration methods: (i) Monte Carlo Dropout, (ii) ensemble, (iii) focal loss, and (iv) spectral-normalized Gaussian process (SNGP), on audio classification datasets. To this end, we evaluate (i-iv) for the tasks of environment sound and music genre classification. Results indicate that uncalibrated deep audio classifiers may be over-confident, and SNGP performs the best and is very efficient on the two datasets of this paper.
Abstract:The visual dialog task attempts to train an agent to answer multi-turn questions given an image, which requires the deep understanding of interactions between the image and dialog history. Existing researches tend to employ the modality-specific modules to model the interactions, which might be troublesome to use. To fill in this gap, we propose a unified framework for image-text joint embedding, named VU-BERT, and apply patch projection to obtain vision embedding firstly in visual dialog tasks to simplify the model. The model is trained over two tasks: masked language modeling and next utterance retrieval. These tasks help in learning visual concepts, utterances dependence, and the relationships between these two modalities. Finally, our VU-BERT achieves competitive performance (0.7287 NDCG scores) on VisDial v1.0 Datasets.
Abstract:This paper investigates an unmanned aerial vehicle (UAV)-assisted wireless powered mobile-edge computing (MEC) system, where the UAV powers the mobile terminals by wireless power transfer (WPT) and provides computation service for them. We aim to maximize the computation rate of terminals while ensuring fairness among them. Considering the random trajectories of mobile terminals, we propose a soft actor-critic (SAC)-based UAV trajectory planning and resource allocation (SAC-TR) algorithm, which combines off-policy and maximum entropy reinforcement learning to promote the convergence of the algorithm. We design the reward as a heterogeneous function of computation rate, fairness, and reaching of destination. Simulation results show that SAC-TR can quickly adapt to varying network environments and outperform representative benchmarks in a variety of situations.