Abstract:Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
Abstract:Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
Abstract:This paper presents Lutma, a collaborative, semi-constrained, tutorial-based tool for contributing frames and lexical units to the Global FrameNet initiative. The tool parameterizes the process of frame creation, avoiding consistency violations and promoting the integration of frames contributed by the community with existing frames. Lutma is structured in a wizard-like fashion so as to provide users with text and video tutorials relevant for each step in the frame creation process. We argue that this tool will allow for a sensible expansion of FrameNet coverage in terms of both languages and cultural perspectives encoded by them, positioning frames as a viable alternative for representing perspective in language models.
Abstract:This paper presents Charon, a web tool for annotating multimodal corpora with FrameNet categories. Annotation can be made for corpora containing both static images and video sequences paired - or not - with text sequences. The pipeline features, besides the annotation interface, corpus import and pre-processing tools.
Abstract:This paper argues in favor of the adoption of annotation practices for multimodal datasets that recognize and represent the inherently perspectivized nature of multimodal communication. To support our claim, we present a set of annotation experiments in which FrameNet annotation is applied to the Multi30k and the Flickr 30k Entities datasets. We assess the cosine similarity between the semantic representations derived from the annotation of both pictures and captions for frames. Our findings indicate that: (i) frame semantic similarity between captions of the same picture produced in different languages is sensitive to whether the caption is a translation of another caption or not, and (ii) picture annotation for semantic frames is sensitive to whether the image is annotated in presence of a caption or not.
Abstract:In this paper we present Scylla, a methodology for domain adaptation of Neural Machine Translation (NMT) systems that make use of a multilingual FrameNet enriched with qualia relations as an external knowledge base. Domain adaptation techniques used in NMT usually require fine-tuning and in-domain training data, which may pose difficulties for those working with lesser-resourced languages and may also lead to performance decay of the NMT system for out-of-domain sentences. Scylla does not require fine-tuning of the NMT model, avoiding the risk of model over-fitting and consequent decrease in performance for out-of-domain translations. Two versions of Scylla are presented: one using the source sentence as input, and another one using the target sentence. We evaluate Scylla in comparison to a state-of-the-art commercial NMT system in an experiment in which 50 sentences from the Sports domain are translated from Brazilian Portuguese to English. The two versions of Scylla significantly outperform the baseline commercial system in HTER.
Abstract:Frame shift is a cross-linguistic phenomenon in translation which results in corresponding pairs of linguistic material evoking different frames. The ability to predict frame shifts enables automatic creation of multilingual FrameNets through annotation projection. Here, we propose the Frame Shift Prediction task and demonstrate that graph attention networks, combined with auxiliary training, can learn cross-linguistic frame-to-frame correspondence and predict frame shifts.
Abstract:Human speakers have an extensive toolkit of ways to express themselves. In this paper, we engage with an idea largely absent from discussions of meaning in natural language understanding--namely, that the way something is expressed reflects different ways of conceptualizing or construing the information being conveyed. We first define this phenomenon more precisely, drawing on considerable prior work in theoretical cognitive semantics and psycholinguistics. We then survey some dimensions of construed meaning and show how insights from construal could inform theoretical and practical work in NLP.