Abstract:Federated Learning (FL) is a method for training machine learning models using distributed data sources. It ensures privacy by allowing clients to collaboratively learn a shared global model while storing their data locally. However, a significant challenge arises when dealing with missing modalities in clients' datasets, where certain features or modalities are unavailable or incomplete, leading to heterogeneous data distribution. While previous studies have addressed the issue of complete-modality missing, they fail to tackle partial-modality missing on account of severe heterogeneity among clients at an instance level, where the pattern of missing data can vary significantly from one sample to another. To tackle this challenge, this study proposes a novel framework named FedMAC, designed to address multi-modality missing under conditions of partial-modality missing in FL. Additionally, to avoid trivial aggregation of multi-modal features, we introduce contrastive-based regularization to impose additional constraints on the latent representation space. The experimental results demonstrate the effectiveness of FedMAC across various client configurations with statistical heterogeneity, outperforming baseline methods by up to 26% in severe missing scenarios, highlighting its potential as a solution for the challenge of partially missing modalities in federated systems.
Abstract:Recent advancements in recommender systems have focused on integrating knowledge graphs (KGs) to leverage their auxiliary information. The core idea of KG-enhanced recommenders is to incorporate rich semantic information for more accurate recommendations. However, two main challenges persist: i) Neglecting complex higher-order interactions in the KG-based user-item network, potentially leading to sub-optimal recommendations, and ii) Dealing with the heterogeneous modalities of input sources, such as user-item bipartite graphs and KGs, which may introduce noise and inaccuracies. To address these issues, we present a novel Knowledge-enhanced Heterogeneous Hypergraph Recommender System (KHGRec). KHGRec captures group-wise characteristics of both the interaction network and the KG, modeling complex connections in the KG. Using a collaborative knowledge heterogeneous hypergraph (CKHG), it employs two hypergraph encoders to model group-wise interdependencies and ensure explainability. Additionally, it fuses signals from the input graphs with cross-view self-supervised learning and attention mechanisms. Extensive experiments on four real-world datasets show our model's superiority over various state-of-the-art baselines, with an average 5.18\% relative improvement. Additional tests on noise resilience, missing data, and cold-start problems demonstrate the robustness of our KHGRec framework. Our model and evaluation datasets are publicly available at \url{https://github.com/viethungvu1998/KHGRec}.
Abstract:Federated learning (FL) has recently emerged as a compelling machine learning paradigm, prioritizing the protection of privacy for training data. The increasing demand to address issues such as ``the right to be forgotten'' and combat data poisoning attacks highlights the importance of techniques, known as \textit{unlearning}, which facilitate the removal of specific training data from trained FL models. Despite numerous unlearning methods proposed for centralized learning, they often prove inapplicable to FL due to fundamental differences in the operation of the two learning paradigms. Consequently, unlearning in FL remains in its early stages, presenting several challenges. Many existing unlearning solutions in FL require a costly retraining process, which can be burdensome for clients. Moreover, these methods are primarily validated through experiments, lacking theoretical assurances. In this study, we introduce Fast-FedUL, a tailored unlearning method for FL, which eliminates the need for retraining entirely. Through meticulous analysis of the target client's influence on the global model in each round, we develop an algorithm to systematically remove the impact of the target client from the trained model. In addition to presenting empirical findings, we offer a theoretical analysis delineating the upper bound of our unlearned model and the exact retrained model (the one obtained through retraining using untargeted clients). Experimental results with backdoor attack scenarios indicate that Fast-FedUL effectively removes almost all traces of the target client, while retaining the knowledge of untargeted clients (obtaining a high accuracy of up to 98\% on the main task). Significantly, Fast-FedUL attains the lowest time complexity, providing a speed that is 1000 times faster than retraining. Our source code is publicly available at \url{https://github.com/thanhtrunghuynh93/fastFedUL}.
Abstract:Recommender systems have become an integral part of online services to help users locate specific information in a sea of data. However, existing studies show that some recommender systems are vulnerable to poisoning attacks, particularly those that involve learning schemes. A poisoning attack is where an adversary injects carefully crafted data into the process of training a model, with the goal of manipulating the system's final recommendations. Based on recent advancements in artificial intelligence, such attacks have gained importance recently. While numerous countermeasures to poisoning attacks have been developed, they have not yet been systematically linked to the properties of the attacks. Consequently, assessing the respective risks and potential success of mitigation strategies is difficult, if not impossible. This survey aims to fill this gap by primarily focusing on poisoning attacks and their countermeasures. This is in contrast to prior surveys that mainly focus on attacks and their detection methods. Through an exhaustive literature review, we provide a novel taxonomy for poisoning attacks, formalise its dimensions, and accordingly organise 30+ attacks described in the literature. Further, we review 40+ countermeasures to detect and/or prevent poisoning attacks, evaluating their effectiveness against specific types of attacks. This comprehensive survey should serve as a point of reference for protecting recommender systems against poisoning attacks. The article concludes with a discussion on open issues in the field and impactful directions for future research. A rich repository of resources associated with poisoning attacks is available at https://github.com/tamlhp/awesome-recsys-poisoning.
Abstract:As the adoption of explainable AI (XAI) continues to expand, the urgency to address its privacy implications intensifies. Despite a growing corpus of research in AI privacy and explainability, there is little attention on privacy-preserving model explanations. This article presents the first thorough survey about privacy attacks on model explanations and their countermeasures. Our contribution to this field comprises a thorough analysis of research papers with a connected taxonomy that facilitates the categorisation of privacy attacks and countermeasures based on the targeted explanations. This work also includes an initial investigation into the causes of privacy leaks. Finally, we discuss unresolved issues and prospective research directions uncovered in our analysis. This survey aims to be a valuable resource for the research community and offers clear insights for those new to this domain. To support ongoing research, we have established an online resource repository, which will be continuously updated with new and relevant findings. Interested readers are encouraged to access our repository at https://github.com/tamlhp/awesome-privex.
Abstract:Advances in deep neural network (DNN) architectures have enabled new prediction techniques for stock market data. Unlike other multivariate time-series data, stock markets show two unique characteristics: (i) \emph{multi-order dynamics}, as stock prices are affected by strong non-pairwise correlations (e.g., within the same industry); and (ii) \emph{internal dynamics}, as each individual stock shows some particular behaviour. Recent DNN-based methods capture multi-order dynamics using hypergraphs, but rely on the Fourier basis in the convolution, which is both inefficient and ineffective. In addition, they largely ignore internal dynamics by adopting the same model for each stock, which implies a severe information loss. In this paper, we propose a framework for stock movement prediction to overcome the above issues. Specifically, the framework includes temporal generative filters that implement a memory-based mechanism onto an LSTM network in an attempt to learn individual patterns per stock. Moreover, we employ hypergraph attentions to capture the non-pairwise correlations. Here, using the wavelet basis instead of the Fourier basis, enables us to simplify the message passing and focus on the localized convolution. Experiments with US market data over six years show that our framework outperforms state-of-the-art methods in terms of profit and stability. Our source code and data are available at \url{https://github.com/thanhtrunghuynh93/estimate}.
Abstract:Computer systems hold a large amount of personal data over decades. On the one hand, such data abundance allows breakthroughs in artificial intelligence (AI), especially machine learning (ML) models. On the other hand, it can threaten the privacy of users and weaken the trust between humans and AI. Recent regulations require that private information about a user can be removed from computer systems in general and from ML models in particular upon request (e.g. the "right to be forgotten"). While removing data from back-end databases should be straightforward, it is not sufficient in the AI context as ML models often "remember" the old data. Existing adversarial attacks proved that we can learn private membership or attributes of the training data from the trained models. This phenomenon calls for a new paradigm, namely machine unlearning, to make ML models forget about particular data. It turns out that recent works on machine unlearning have not been able to solve the problem completely due to the lack of common frameworks and resources. In this survey paper, we seek to provide a thorough investigation of machine unlearning in its definitions, scenarios, mechanisms, and applications. Specifically, as a categorical collection of state-of-the-art research, we hope to provide a broad reference for those seeking a primer on machine unlearning and its various formulations, design requirements, removal requests, algorithms, and uses in a variety of ML applications. Furthermore, we hope to outline key findings and trends in the paradigm as well as highlight new areas of research that have yet to see the application of machine unlearning, but could nonetheless benefit immensely. We hope this survey provides a valuable reference for ML researchers as well as those seeking to innovate privacy technologies. Our resources are at https://github.com/tamlhp/awesome-machine-unlearning.
Abstract:Today's social networks continuously generate massive streams of data, which provide a valuable starting point for the detection of rumours as soon as they start to propagate. However, rumour detection faces tight latency bounds, which cannot be met by contemporary algorithms, given the sheer volume of high-velocity streaming data emitted by social networks. Hence, in this paper, we argue for best-effort rumour detection that detects most rumours quickly rather than all rumours with a high delay. To this end, we combine techniques for efficient, graph-based matching of rumour patterns with effective load shedding that discards some of the input data while minimising the loss in accuracy. Experiments with large-scale real-world datasets illustrate the robustness of our approach in terms of runtime performance and detection accuracy under diverse streaming conditions.
Abstract:Knowledge graph (KG) alignment - the task of recognizing entities referring to the same thing in different KGs - is recognized as one of the most important operations in the field of KG construction and completion. However, existing alignment techniques often assume that the input KGs are complete and isomorphic, which is not true due to the real-world heterogeneity in the domain, size, and sparsity. In this work, we address the problem of aligning incomplete KGs with representation learning. Our KG embedding framework exploits two feature channels: transitivity-based and proximity-based. The former captures the consistency constraints between entities via translation paths, while the latter captures the neighbourhood structure of KGs via attention guided relation-aware graph neural network. The two feature channels are jointly learned to exchange important features between the input KGs while enforcing the output representations of the input KGs in the same embedding space. Also, we develop a missing links detector that discovers and recovers the missing links in the input KGs during the training process, which helps mitigate the incompleteness issue and thus improve the compatibility of the learned representations. The embeddings then are fused to generate the alignment result, and the high-confidence matched node pairs are updated to the pre-aligned supervision data to improve the embeddings gradually. Empirical results show that our model is up to 15.2\% more accurate than the SOTA and is robust against different levels of incompleteness. We also demonstrate that the knowledge exchanging between the KGs helps reveal the unseen facts from knowledge graphs (a.k.a. knowledge completion), with the result being 3.5\% higher than the SOTA knowledge graph completion techniques.
Abstract:In recent years, visual forgery has reached a level of sophistication that humans cannot identify fraud, which poses a significant threat to information security. A wide range of malicious applications have emerged, such as fake news, defamation or blackmailing of celebrities, impersonation of politicians in political warfare, and the spreading of rumours to attract views. As a result, a rich body of visual forensic techniques has been proposed in an attempt to stop this dangerous trend. In this paper, we present a benchmark that provides in-depth insights into visual forgery and visual forensics, using a comprehensive and empirical approach. More specifically, we develop an independent framework that integrates state-of-the-arts counterfeit generators and detectors, and measure the performance of these techniques using various criteria. We also perform an exhaustive analysis of the benchmarking results, to determine the characteristics of the methods that serve as a comparative reference in this never-ending war between measures and countermeasures.