Abstract:Recommender systems rely on Collaborative Filtering (CF) to predict user preferences by leveraging patterns in historical user-item interactions. While traditional CF methods primarily focus on learning compact vector embeddings for users and items, graph neural network (GNN)-based approaches have emerged as a powerful alternative, utilizing the structure of user-item interaction graphs to enhance recommendation accuracy. However, existing GNN-based models, such as LightGCN and UltraGCN, often struggle with two major limitations: an inability to fully account for heterophilic interactions, where users engage with diverse item categories, and the over-smoothing problem in multi-layer GNNs, which hinders their ability to model complex, high-order relationships. To address these gaps, we introduce WaveHDNN, an innovative wavelet-enhanced hypergraph diffusion framework. WaveHDNN integrates a Heterophily-aware Collaborative Encoder, designed to capture user-item interactions across diverse categories, with a Multi-scale Group-wise Structure Encoder, which leverages wavelet transforms to effectively model localized graph structures. Additionally, cross-view contrastive learning is employed to maintain robust and consistent representations. Experiments on benchmark datasets validate the efficacy of WaveHDNN, demonstrating its superior ability to capture both heterophilic and localized structural information, leading to improved recommendation performance.
Abstract:Recommender systems are pivotal in delivering personalised user experiences across various domains. However, capturing the heterophily patterns and the multi-dimensional nature of user-item interactions poses significant challenges. To address this, we introduce FWHDNN (Fusion-based Wavelet Hypergraph Diffusion Neural Networks), an innovative framework aimed at advancing representation learning in hypergraph-based recommendation tasks. The model incorporates three key components: (1) a cross-difference relation encoder leveraging heterophily-aware hypergraph diffusion to adapt message-passing for diverse class labels, (2) a multi-level cluster-wise encoder employing wavelet transform-based hypergraph neural network layers to capture multi-scale topological relationships, and (3) an integrated multi-modal fusion mechanism that combines structural and textual information through intermediate and late-fusion strategies. Extensive experiments on real-world datasets demonstrate that FWHDNN surpasses state-of-the-art methods in accuracy, robustness, and scalability in capturing high-order interconnections between users and items.
Abstract:Recent advancements in recommender systems have focused on integrating knowledge graphs (KGs) to leverage their auxiliary information. The core idea of KG-enhanced recommenders is to incorporate rich semantic information for more accurate recommendations. However, two main challenges persist: i) Neglecting complex higher-order interactions in the KG-based user-item network, potentially leading to sub-optimal recommendations, and ii) Dealing with the heterogeneous modalities of input sources, such as user-item bipartite graphs and KGs, which may introduce noise and inaccuracies. To address these issues, we present a novel Knowledge-enhanced Heterogeneous Hypergraph Recommender System (KHGRec). KHGRec captures group-wise characteristics of both the interaction network and the KG, modeling complex connections in the KG. Using a collaborative knowledge heterogeneous hypergraph (CKHG), it employs two hypergraph encoders to model group-wise interdependencies and ensure explainability. Additionally, it fuses signals from the input graphs with cross-view self-supervised learning and attention mechanisms. Extensive experiments on four real-world datasets show our model's superiority over various state-of-the-art baselines, with an average 5.18\% relative improvement. Additional tests on noise resilience, missing data, and cold-start problems demonstrate the robustness of our KHGRec framework. Our model and evaluation datasets are publicly available at \url{https://github.com/viethungvu1998/KHGRec}.