Abstract:Recent advancements in head-mounted wearable technology are revolutionizing the field of biopotential measurement, but the integration of these technologies into practical, user-friendly devices remains challenging due to issues with design intrusiveness, comfort, and data privacy. To address these challenges, this paper presents GAPSES, a novel smart glasses platform designed for unobtrusive, comfortable, and secure acquisition and processing of electroencephalography (EEG) and electrooculography (EOG) signals. We introduce a direct electrode-electronics interface with custom fully dry soft electrodes to enhance comfort for long wear. An integrated parallel ultra-low-power RISC-V processor (GAP9, Greenwaves Technologies) processes data at the edge, thereby eliminating the need for continuous data streaming through a wireless link, enhancing privacy, and increasing system reliability in adverse channel conditions. We demonstrate the broad applicability of the designed prototype through validation in a number of EEG-based interaction tasks, including alpha waves, steady-state visual evoked potential analysis, and motor movement classification. Furthermore, we demonstrate an EEG-based biometric subject recognition task, where we reach a sensitivity and specificity of 98.87% and 99.86% respectively, with only 8 EEG channels and an energy consumption per inference on the edge as low as 121 uJ. Moreover, in an EOG-based eye movement classification task, we reach an accuracy of 96.68% on 11 classes, resulting in an information transfer rate of 94.78 bit/min, which can be further increased to 161.43 bit/min by reducing the accuracy to 81.43%. The deployed implementation has an energy consumption of 24 uJ per inference and a total system power of only 16.28 mW, allowing for continuous operation of more than 12 h with a small 75 mAh battery.
Abstract:The rapid advancement of energy-efficient parallel ultra-low-power (ULP) ucontrollers units (MCUs) is enabling the development of autonomous nano-sized unmanned aerial vehicles (nano-UAVs). These sub-10cm drones represent the next generation of unobtrusive robotic helpers and ubiquitous smart sensors. However, nano-UAVs face significant power and payload constraints while requiring advanced computing capabilities akin to standard drones, including real-time Machine Learning (ML) performance and the safe co-existence of general-purpose and real-time OSs. Although some advanced parallel ULP MCUs offer the necessary ML computing capabilities within the prescribed power limits, they rely on small main memories (<1MB) and ucontroller-class CPUs with no virtualization or security features, and hence only support simple bare-metal runtimes. In this work, we present Shaheen, a 9mm2 200mW SoC implemented in 22nm FDX technology. Differently from state-of-the-art MCUs, Shaheen integrates a Linux-capable RV64 core, compliant with the v1.0 ratified Hypervisor extension and equipped with timing channel protection, along with a low-cost and low-power memory controller exposing up to 512MB of off-chip low-cost low-power HyperRAM directly to the CPU. At the same time, it integrates a fully programmable energy- and area-efficient multi-core cluster of RV32 cores optimized for general-purpose DSP as well as reduced- and mixed-precision ML. To the best of the authors' knowledge, it is the first silicon prototype of a ULP SoC coupling the RV64 and RV32 cores in a heterogeneous host+accelerator architecture fully based on the RISC-V ISA. We demonstrate the capabilities of the proposed SoC on a wide range of benchmarks relevant to nano-UAV applications. The cluster can deliver up to 90GOp/s and up to 1.8TOp/s/W on 2-bit integer kernels and up to 7.9GFLOp/s and up to 150GFLOp/s/W on 16-bit FP kernels.
Abstract:Surface electromyography (sEMG) is a well-established approach to monitor muscular activity on wearable and resource-constrained devices. However, when measuring deeper muscles, its low signal-to-noise ratio (SNR), high signal attenuation, and crosstalk degrade sensing performance. Ultrasound (US) complements sEMG effectively with its higher SNR at high penetration depths. In fact, combining US and sEMG improves the accuracy of muscle dynamic assessment, compared to using only one modality. However, the power envelope of US hardware is considerably higher than that of sEMG, thus inflating energy consumption and reducing the battery life. This work proposes a wearable solution that integrates both modalities and utilizes an EMG-driven wake-up approach to achieve ultra-low power consumption as needed for wearable long-term monitoring. We integrate two wearable state-of-the-art (SoA) US and ExG biosignal acquisition devices to acquire time-synchronized measurements of the short head of the biceps. To minimize power consumption, the US probe is kept in a sleep state when there is no muscle activity. sEMG data are processed on the probe (filtering, envelope extraction and thresholding) to identify muscle activity and generate a trigger to wake-up the US counterpart. The US acquisition starts before muscle fascicles displacement thanks to a triggering time faster than the electromechanical delay (30-100 ms) between the neuromuscular junction stimulation and the muscle contraction. Assuming a muscle contraction of 200 ms at a contraction rate of 1 Hz, the proposed approach enables more than 59% energy saving (with a full-system average power consumption of 12.2 mW) as compared to operating both sEMG and US continuously.
Abstract:Epilepsy is a prevalent neurological disorder that affects millions of individuals globally, and continuous monitoring coupled with automated seizure detection appears as a necessity for effective patient treatment. To enable long-term care in daily-life conditions, comfortable and smart wearable devices with long battery life are required, which in turn set the demand for resource-constrained and energy-efficient computing solutions. In this context, the development of machine learning algorithms for seizure detection faces the challenge of heavily imbalanced datasets. This paper introduces EpiDeNet, a new lightweight seizure detection network, and Sensitivity-Specificity Weighted Cross-Entropy (SSWCE), a new loss function that incorporates sensitivity and specificity, to address the challenge of heavily unbalanced datasets. The proposed EpiDeNet-SSWCE approach demonstrates the successful detection of 91.16% and 92.00% seizure events on two different datasets (CHB-MIT and PEDESITE, respectively), with only four EEG channels. A three-window majority voting-based smoothing scheme combined with the SSWCE loss achieves 3x reduction of false positives to 1.18 FP/h. EpiDeNet is well suited for implementation on low-power embedded platforms, and we evaluate its performance on two ARM Cortex-based platforms (M4F/M7) and two parallel ultra-low power (PULP) systems (GAP8, GAP9). The most efficient implementation (GAP9) achieves an energy efficiency of 40 GMAC/s/W, with an energy consumption per inference of only 0.051 mJ at high performance (726.46 MMAC/s), outperforming the best ARM Cortex-based solutions by approximately 160x in energy efficiency. The EpiDeNet-SSWCE method demonstrates effective and accurate seizure detection performance on heavily imbalanced datasets, while being suited for implementation on energy-constrained platforms.
Abstract:Discrimination of hand gestures based on the decoding of surface electromyography (sEMG) signals is a well-establish approach for controlling prosthetic devices and for Human-Machine Interfaces (HMI). However, despite the promising results achieved by this approach in well-controlled experimental conditions, its deployment in long-term real-world application scenarios is still hindered by several challenges. One of the most critical challenges is maintaining high EMG data classification performance across multiple days without retraining the decoding system. The drop in performance is mostly due to the high EMG variability caused by electrodes shift, muscle artifacts, fatigue, user adaptation, or skin-electrode interfacing issues. Here we propose a novel statistical method based on canonical correlation analysis (CCA) that stabilizes EMG classification performance across multiple days for long-term control of prosthetic devices. We show how CCA can dramatically decrease the performance drop of standard classifiers observed across days, by maximizing the correlation among multiple-day acquisition data sets. Our results show how the performance of a classifier trained on EMG data acquired only of the first day of the experiment maintains 90% relative accuracy across multiple days, compensating for the EMG data variability that occurs over long-term periods, using the CCA transformation on data obtained from a small number of gestures. This approach eliminates the need for large data sets and multiple or periodic training sessions, which currently hamper the usability of conventional pattern recognition based approaches
Abstract:In the context of epilepsy monitoring, EEG artifacts are often mistaken for seizures due to their morphological similarity in both amplitude and frequency, making seizure detection systems susceptible to higher false alarm rates. In this work we present the implementation of an artifact detection algorithm based on a minimal number of EEG channels on a parallel ultra-low-power (PULP) embedded platform. The analyses are based on the TUH EEG Artifact Corpus dataset and focus on the temporal electrodes. First, we extract optimal feature models in the frequency domain using an automated machine learning framework, achieving a 93.95% accuracy, with a 0.838 F1 score for a 4 temporal EEG channel setup. The achieved accuracy levels surpass state-of-the-art by nearly 20%. Then, these algorithms are parallelized and optimized for a PULP platform, achieving a 5.21 times improvement of energy-efficient compared to state-of-the-art low-power implementations of artifact detection frameworks. Combining this model with a low-power seizure detection algorithm would allow for 300h of continuous monitoring on a 300 mAh battery in a wearable form factor and power budget. These results pave the way for implementing affordable, wearable, long-term epilepsy monitoring solutions with low false-positive rates and high sensitivity, meeting both patients' and caregivers' requirements.
Abstract:A wrist-worn PPG sensor coupled with a lightweight algorithm can run on a MCU to enable non-invasive and comfortable monitoring, but ensuring robust PPG-based heart-rate monitoring in the presence of motion artifacts is still an open challenge. Recent state-of-the-art algorithms combine PPG and inertial signals to mitigate the effect of motion artifacts. However, these approaches suffer from limited generality. Moreover, their deployment on MCU-based edge nodes has not been investigated. In this work, we tackle both the aforementioned problems by proposing the use of hardware-friendly Temporal Convolutional Networks (TCN) for PPG-based heart estimation. Starting from a single "seed" TCN, we leverage an automatic Neural Architecture Search (NAS) approach to derive a rich family of models. Among them, we obtain a TCN that outperforms the previous state-of-the-art on the largest PPG dataset available (PPGDalia), achieving a Mean Absolute Error (MAE) of just 3.84 Beats Per Minute (BPM). Furthermore, we tested also a set of smaller yet still accurate (MAE of 5.64 - 6.29 BPM) networks that can be deployed on a commercial MCU (STM32L4) which require as few as 5k parameters and reach a latency of 17.1 ms consuming just 0.21 mJ per inference.
Abstract:Human-machine interaction is gaining traction in rehabilitation tasks, such as controlling prosthetic hands or robotic arms. Gesture recognition exploiting surface electromyographic (sEMG) signals is one of the most promising approaches, given that sEMG signal acquisition is non-invasive and is directly related to muscle contraction. However, the analysis of these signals still presents many challenges since similar gestures result in similar muscle contractions. Thus the resulting signal shapes are almost identical, leading to low classification accuracy. To tackle this challenge, complex neural networks are employed, which require large memory footprints, consume relatively high energy and limit the maximum battery life of devices used for classification. This work addresses this problem with the introduction of the Bioformers. This new family of ultra-small attention-based architectures approaches state-of-the-art performance while reducing the number of parameters and operations of 4.9X. Additionally, by introducing a new inter-subjects pre-training, we improve the accuracy of our best Bioformer by 3.39%, matching state-of-the-art accuracy without any additional inference cost. Deploying our best performing Bioformer on a Parallel, Ultra-Low Power (PULP) microcontroller unit (MCU), the GreenWaves GAP8, we achieve an inference latency and energy of 2.72 ms and 0.14 mJ, respectively, 8.0X lower than the previous state-of-the-art neural network, while occupying just 94.2 kB of memory.
Abstract:Hearth Rate (HR) monitoring is increasingly performed in wrist-worn devices using low-cost photoplethysmography (PPG) sensors. However, Motion Artifacts (MAs) caused by movements of the subject's arm affect the performance of PPG-based HR tracking. This is typically addressed coupling the PPG signal with acceleration measurements from an inertial sensor. Unfortunately, most standard approaches of this kind rely on hand-tuned parameters, which impair their generalization capabilities and their applicability to real data in the field. In contrast, methods based on deep learning, despite their better generalization, are considered to be too complex to deploy on wearable devices. In this work, we tackle these limitations, proposing a design space exploration methodology to automatically generate a rich family of deep Temporal Convolutional Networks (TCNs) for HR monitoring, all derived from a single "seed" model. Our flow involves a cascade of two Neural Architecture Search (NAS) tools and a hardware-friendly quantizer, whose combination yields both highly accurate and extremely lightweight models. When tested on the PPG-Dalia dataset, our most accurate model sets a new state-of-the-art in Mean Absolute Error. Furthermore, we deploy our TCNs on an embedded platform featuring a STM32WB55 microcontroller, demonstrating their suitability for real-time execution. Our most accurate quantized network achieves 4.41 Beats Per Minute (BPM) of Mean Absolute Error (MAE), with an energy consumption of 47.65 mJ and a memory footprint of 412 kB. At the same time, the smallest network that obtains a MAE < 8 BPM, among those generated by our flow, has a memory footprint of 1.9 kB and consumes just 1.79 mJ per inference.
Abstract:Photoplethysmography (PPG) sensors allow for non-invasive and comfortable heart-rate (HR) monitoring, suitable for compact wrist-worn devices. Unfortunately, Motion Artifacts (MAs) severely impact the monitoring accuracy, causing high variability in the skin-to-sensor interface. Several data fusion techniques have been introduced to cope with this problem, based on combining PPG signals with inertial sensor data. Until know, both commercial and reasearch solutions are computationally efficient but not very robust, or strongly dependent on hand-tuned parameters, which leads to poor generalization performance. % In this work, we tackle these limitations by proposing a computationally lightweight yet robust deep learning-based approach for PPG-based HR estimation. Specifically, we derive a diverse set of Temporal Convolutional Networks (TCN) for HR estimation, leveraging Neural Architecture Search (NAS). Moreover, we also introduce ActPPG, an adaptive algorithm that selects among multiple HR estimators depending on the amount of MAs, to improve energy efficiency. We validate our approaches on two benchmark datasets, achieving as low as 3.84 Beats per Minute (BPM) of Mean Absolute Error (MAE) on PPGDalia, which outperforms the previous state-of-the-art. Moreover, we deploy our models on a low-power commercial microcontroller (STM32L4), obtaining a rich set of Pareto optimal solutions in the complexity vs. accuracy space.