Abstract:Model merging has emerged as a promising approach for unifying independently fine-tuned models into an integrated framework, significantly enhancing computational efficiency in multi-task learning. Recently, several SVD-based techniques have been introduced to exploit low-rank structures for enhanced merging, but their reliance on such manually designed rank selection often leads to cross-task interference and suboptimal performance. In this paper, we propose AdaRank, a novel model merging framework that adaptively selects the most beneficial singular directions of task vectors to merge multiple models. We empirically show that the dominant singular components of task vectors can cause critical interference with other tasks, and that naive truncation across tasks and layers degrades performance. In contrast, AdaRank dynamically prunes the singular components that cause interference and offers an optimal amount of information to each task vector by learning to prune ranks during test-time via entropy minimization. Our analysis demonstrates that such method mitigates detrimental overlaps among tasks, while empirical results show that AdaRank consistently achieves state-of-the-art performance with various backbones and number of tasks, reducing the performance gap between fine-tuned models to nearly 1%.
Abstract:Recent token reduction methods for Vision Transformers (ViTs) incorporate token merging, which measures the similarities between token embeddings and combines the most similar pairs. However, their merging policies are directly dependent on intermediate features in ViTs, which prevents exploiting features tailored for merging and requires end-to-end training to improve token merging. In this paper, we propose Decoupled Token Embedding for Merging (DTEM) that enhances token merging through a decoupled embedding learned via a continuously relaxed token merging process. Our method introduces a lightweight embedding module decoupled from the ViT forward pass to extract dedicated features for token merging, thereby addressing the restriction from using intermediate features. The continuously relaxed token merging, applied during training, enables us to learn the decoupled embeddings in a differentiable manner. Thanks to the decoupled structure, our method can be seamlessly integrated into existing ViT backbones and trained either modularly by learning only the decoupled embeddings or end-to-end by fine-tuning. We demonstrate the applicability of DTEM on various tasks, including classification, captioning, and segmentation, with consistent improvement in token merging. Especially in the ImageNet-1k classification, DTEM achieves a 37.2% reduction in FLOPs while maintaining a top-1 accuracy of 79.85% with DeiT-small. Code is available at \href{https://github.com/movinghoon/dtem}{link}.
Abstract:Model merging aims to build a multi-task learner by combining the parameters of individually fine-tuned models without additional training. While a straightforward approach is to average model parameters across tasks, this often results in suboptimal performance due to interference among parameters across tasks. In this paper, we present intriguing results that weight averaging implicitly induces task vectors centered around the weight averaging itself and that applying a low-rank approximation to these centered task vectors significantly improves merging performance. Our analysis shows that centering the task vectors effectively separates core task-specific knowledge and nuisance noise within the fine-tuned parameters into the top and lower singular vectors, respectively, allowing us to reduce inter-task interference through its low-rank approximation. We evaluate our method on eight image classification tasks, demonstrating that it outperforms prior methods by a significant margin, narrowing the performance gap with traditional multi-task learning to within 1-3%
Abstract:Generalizing across robot embodiments and tasks is crucial for adaptive robotic systems. Modular policy learning approaches adapt to new embodiments but are limited to specific tasks, while few-shot imitation learning (IL) approaches often focus on a single embodiment. In this paper, we introduce a few-shot behavior cloning framework to simultaneously generalize to unseen embodiments and tasks using a few (\emph{e.g.,} five) reward-free demonstrations. Our framework leverages a joint-level input-output representation to unify the state and action spaces of heterogeneous embodiments and employs a novel structure-motion state encoder that is parameterized to capture both shared knowledge across all embodiments and embodiment-specific knowledge. A matching-based policy network then predicts actions from a few demonstrations, producing an adaptive policy that is robust to over-fitting. Evaluated in the DeepMind Control suite, our framework termed \modelname{} demonstrates superior few-shot generalization to unseen embodiments and tasks over modular policy learning and few-shot IL approaches. Codes are available at \href{https://github.com/SeongwoongCho/meta-controller}{https://github.com/SeongwoongCho/meta-controller}.
Abstract:In this work, we investigate a method for simulation-free training of Neural Ordinary Differential Equations (NODEs) for learning deterministic mappings between paired data. Despite the analogy of NODEs as continuous-depth residual networks, their application in typical supervised learning tasks has not been popular, mainly due to the large number of function evaluations required by ODE solvers and numerical instability in gradient estimation. To alleviate this problem, we employ the flow matching framework for simulation-free training of NODEs, which directly regresses the parameterized dynamics function to a predefined target velocity field. Contrary to generative tasks, however, we show that applying flow matching directly between paired data can often lead to an ill-defined flow that breaks the coupling of the data pairs (e.g., due to crossing trajectories). We propose a simple extension that applies flow matching in the embedding space of data pairs, where the embeddings are learned jointly with the dynamic function to ensure the validity of the flow which is also easier to learn. We demonstrate the effectiveness of our method on both regression and classification tasks, where our method outperforms existing NODEs with a significantly lower number of function evaluations. The code is available at https://github.com/seminkim/simulation-free-node.
Abstract:Test-time adaptation (TTA) allows a model to be adapted to an unseen domain without accessing the source data. Due to the nature of practical environments, TTA has a limited amount of data for adaptation. Recent TTA methods further restrict this by filtering input data for reliability, making the effective data size even smaller and limiting adaptation potential. To address this issue, We propose Feature Augmentation based Test-time Adaptation (FATA), a simple method that fully utilizes the limited amount of input data through feature augmentation. FATA employs Normalization Perturbation to augment features and adapts the model using the FATA loss, which makes the outputs of the augmented and original features similar. FATA is model-agnostic and can be seamlessly integrated into existing models without altering the model architecture. We demonstrate the effectiveness of FATA on various models and scenarios on ImageNet-C and Office-Home, validating its superiority in diverse real-world conditions.
Abstract:We revisit a simple idea for machine learning on graphs, where a random walk on a graph produces a machine-readable record, and this record is processed by a deep neural network to directly make vertex-level or graph-level predictions. We refer to these stochastic machines as random walk neural networks, and show that we can design them to be isomorphism invariant while capable of universal approximation of graph functions in probability. A useful finding is that almost any kind of record of random walk guarantees probabilistic invariance as long as the vertices are anonymized. This enables us to record random walks in plain text and adopt a language model to read these text records to solve graph tasks. We further establish a parallelism to message passing neural networks using tools from Markov chain theory, and show that over-smoothing in message passing is alleviated by construction in random walk neural networks, while over-squashing manifests as probabilistic under-reaching. We show that random walk neural networks based on pre-trained language models can solve several hard problems on graphs, such as separating strongly regular graphs where the 3-WL test fails, counting substructures, and transductive classification on arXiv citation network without training. Code is available at https://github.com/jw9730/random-walk.
Abstract:Learning compositional representation is a key aspect of object-centric learning as it enables flexible systematic generalization and supports complex visual reasoning. However, most of the existing approaches rely on auto-encoding objective, while the compositionality is implicitly imposed by the architectural or algorithmic bias in the encoder. This misalignment between auto-encoding objective and learning compositionality often results in failure of capturing meaningful object representations. In this study, we propose a novel objective that explicitly encourages compositionality of the representations. Built upon the existing object-centric learning framework (e.g., slot attention), our method incorporates additional constraints that an arbitrary mixture of object representations from two images should be valid by maximizing the likelihood of the composite data. We demonstrate that incorporating our objective to the existing framework consistently improves the objective-centric learning and enhances the robustness to the architectural choices.
Abstract:Large language models have evolved data-efficient generalists, benefiting from the universal language interface and large-scale pre-training. However, constructing a data-efficient generalist for dense visual prediction presents a distinct challenge due to the variation in label structures across different tasks. Consequently, generalization to unseen dense prediction tasks in the low-data regime is not straightforward and has received less attention from previous vision generalists. In this study, we explore a universal model that can flexibly adapt to unseen dense label structures with a few examples, enabling it to serve as a data-efficient vision generalist in diverse real-world scenarios. To this end, we base our method on a powerful meta-learning framework and explore several axes to improve its performance and versatility for real-world problems, such as flexible adaptation mechanisms and scalability. We evaluate our model across a spectrum of unseen real-world scenarios where low-shot learning is desirable, including video, 3D, medical, biological, and user-interactive tasks. Equipped with a generic architecture and an effective adaptation mechanism, our model flexibly adapts to all of these tasks with at most 50 labeled images, showcasing a significant advancement over existing data-efficient generalist approaches. Codes are available at https://github.com/GitGyun/chameleon.
Abstract:We present a general framework for symmetrizing an arbitrary neural-network architecture and making it equivariant with respect to a given group. We build upon the proposals of Kim et al. (2023); Kaba et al. (2023) for symmetrization, and improve them by replacing their conversion of neural features into group representations, with an optimization whose loss intuitively measures the distance between group orbits. This change makes our approach applicable to a broader range of matrix groups, such as the Lorentz group O(1, 3), than these two proposals. We experimentally show our method's competitiveness on the SO(2) image classification task, and also its increased generality on the task with O(1, 3). Our implementation will be made accessible at https://github.com/tiendatnguyen-vision/Orbit-symmetrize.