Abstract:Although Large Language Models (LLMs) are effective in performing various NLP tasks, they still struggle to handle tasks that require extensive, real-world knowledge, especially when dealing with long-tail facts (facts related to long-tail entities). This limitation highlights the need to supplement LLMs with non-parametric knowledge. To address this issue, we analysed the effects of different types of non-parametric knowledge, including textual passage and knowledge graphs (KGs). Since LLMs have probably seen the majority of factual question-answering datasets already, to facilitate our analysis, we proposed a fully automatic pipeline for creating a benchmark that requires knowledge of long-tail facts for answering the involved questions. Using this pipeline, we introduce the LTGen benchmark. We evaluate state-of-the-art LLMs in different knowledge settings using the proposed benchmark. Our experiments show that LLMs alone struggle with answering these questions, especially when the long-tail level is high or rich knowledge is required. Nonetheless, the performance of the same models improved significantly when they were prompted with non-parametric knowledge. We observed that, in most cases, prompting LLMs with KG triples surpasses passage-based prompting using a state-of-the-art retriever. In addition, while prompting LLMs with both KG triples and documents does not consistently improve knowledge coverage, it can dramatically reduce hallucinations in the generated content.
Abstract:Text generation from Abstract Meaning Representation (AMR) has substantially benefited from the popularized Pretrained Language Models (PLMs). Myriad approaches have linearized the input graph as a sequence of tokens to fit the PLM tokenization requirements. Nevertheless, this transformation jeopardizes the structural integrity of the graph and is therefore detrimental to its resulting representation. To overcome this issue, Ribeiro et al. have recently proposed StructAdapt, a structure-aware adapter which injects the input graph connectivity within PLMs using Graph Neural Networks (GNNs). In this paper, we investigate the influence of Relative Position Embeddings (RPE) on AMR-to-Text, and, in parallel, we examine the robustness of StructAdapt. Through ablation studies, graph attack and link prediction, we reveal that RPE might be partially encoding input graphs. We suggest further research regarding the role of RPE will provide valuable insights for Graph-to-Text generation.
Abstract:Evaluation in machine learning is usually informed by past choices, for example which datasets or metrics to use. This standardization enables the comparison on equal footing using leaderboards, but the evaluation choices become sub-optimal as better alternatives arise. This problem is especially pertinent in natural language generation which requires ever-improving suites of datasets, metrics, and human evaluation to make definitive claims. To make following best model evaluation practices easier, we introduce GEMv2. The new version of the Generation, Evaluation, and Metrics Benchmark introduces a modular infrastructure for dataset, model, and metric developers to benefit from each others work. GEMv2 supports 40 documented datasets in 51 languages. Models for all datasets can be evaluated online and our interactive data card creation and rendering tools make it easier to add new datasets to the living benchmark.
Abstract:Knowledge Graph (KG) completion has been excessively studied with a massive number of models proposed for the Link Prediction (LP) task. The main limitation of such models is their insensitivity to time. Indeed, the temporal aspect of stored facts is often ignored. To this end, more and more works consider time as a parameter to complete KGs. In this paper, we first demonstrate that, by simply increasing the number of negative samples, the recent AttH model can achieve competitive or even better performance than the state-of-the-art on Temporal KGs (TKGs), albeit its nontemporality. We further propose Hercules, a time-aware extension of AttH model, which defines the curvature of a Riemannian manifold as the product of both relation and time. Our experiments show that both Hercules and AttH achieve competitive or new state-of-the-art performances on ICEWS04 and ICEWS05-15 datasets. Therefore, one should raise awareness when learning TKGs representations to identify whether time truly boosts performances.
Abstract:The task of verbalization of RDF triples has known a growth in popularity due to the rising ubiquity of Knowledge Bases (KBs). The formalism of RDF triples is a simple and efficient way to store facts at a large scale. However, its abstract representation makes it difficult for humans to interpret. For this purpose, the WebNLG challenge aims at promoting automated RDF-to-text generation. We propose to leverage pre-trainings from augmented data with the Transformer model using a data augmentation strategy. Our experiment results show a minimum relative increases of 3.73%, 126.05% and 88.16% in BLEU score for seen categories, unseen entities and unseen categories respectively over the standard training.