Abstract:In this paper, we consider the tracking of arbitrary curvilinear geometric paths in three-dimensional output spaces of unmanned aerial vehicles (UAVs) without pre-specified timing requirements, commonly referred to as path-following problems, subjected to bounded inputs. Specifically, we propose a novel nonlinear path-following guidance law for a UAV that enables it to follow any smooth curvilinear path in three dimensions while accounting for the bounded control authority in the design. The proposed solution offers a general treatment of the path-following problem by removing the dependency on the path's geometry, which makes it applicable to paths with varying levels of complexity and smooth curvatures. Additionally, the proposed strategy draws inspiration from the pursuit guidance approach, which is known for its simplicity and ease of implementation. Theoretical analysis guarantees that the UAV converges to its desired path within a fixed time and remains on it irrespective of its initial configuration with respect to the path. Finally, the simulations demonstrate the merits and effectiveness of the proposed guidance strategy through a wide range of engagement scenarios, showcasing the UAV's ability to follow diverse curvilinear paths accurately.
Abstract:The "small agent, big world" frame offers a conceptual view that motivates the need for continual learning. The idea is that a small agent operating in a much bigger world cannot store all information that the world has to offer. To perform well, the agent must be carefully designed to ingest, retain, and eject the right information. To enable the development of performant continual learning agents, a number of synthetic environments have been proposed. However, these benchmarks suffer from limitations, including unnatural distribution shifts and a lack of fidelity to the "small agent, big world" framing. This paper aims to formalize two desiderata for the design of future simulated environments. These two criteria aim to reflect the objectives and complexity of continual learning in practical settings while enabling rapid prototyping of algorithms on a smaller scale.
Abstract:A default assumption in the design of reinforcement-learning algorithms is that a decision-making agent always explores to learn optimal behavior. In sufficiently complex environments that approach the vastness and scale of the real world, however, attaining optimal performance may in fact be an entirely intractable endeavor and an agent may seldom find itself in a position to complete the requisite exploration for identifying an optimal policy. Recent work has leveraged tools from information theory to design agents that deliberately forgo optimal solutions in favor of sufficiently-satisfying or satisficing solutions, obtained through lossy compression. Notably, such agents may employ fundamentally different exploratory decisions to learn satisficing behaviors more efficiently than optimal ones that are more data intensive. While supported by a rigorous corroborating theory, the underlying algorithm relies on model-based planning, drastically limiting the compatibility of these ideas with function approximation and high-dimensional observations. In this work, we remedy this issue by extending an agent that directly represents uncertainty over the optimal value function allowing it to both bypass the need for model-based planning and to learn satisficing policies. We provide simple yet illustrative experiments that demonstrate how our algorithm enables deep reinforcement-learning agents to achieve satisficing behaviors. In keeping with previous work on this setting for multi-armed bandits, we additionally find that our algorithm is capable of synthesizing optimal behaviors, when feasible, more efficiently than its non-information-theoretic counterpart.
Abstract:This article presents a three-dimensional nonlinear trajectory tracking control strategy for unmanned aerial vehicles (UAVs) in the presence of spatial constraints. As opposed to many existing control strategies, which do not consider spatial constraints, the proposed strategy considers spatial constraints on each degree of freedom movement of the UAV. Such consideration makes the design appealing for many practical applications, such as pipeline inspection, boundary tracking, etc. The proposed design accounts for the limited information about the inertia matrix, thereby affirming its inherent robustness against unmodeled dynamics and other imperfections. We rigorously show that the UAV will converge to its desired path by maintaining bounded position, orientation, and linear and angular speeds. Finally, we demonstrate the effectiveness of the proposed strategy through various numerical simulations.
Abstract:Loss of plasticity is a phenomenon where neural networks become more difficult to train during the course of learning. Continual learning algorithms seek to mitigate this effect by sustaining good predictive performance while maintaining network trainability. We develop new techniques for improving continual learning by first reconsidering how initialization can ensure trainability during early phases of learning. From this perspective, we derive new regularization strategies for continual learning that ensure beneficial initialization properties are better maintained throughout training. In particular, we investigate two new regularization techniques for continual learning: (i) Wasserstein regularization toward the initial weight distribution, which is less restrictive than regularizing toward initial weights; and (ii) regularizing weight matrix singular values, which directly ensures gradient diversity is maintained throughout training. We present an experimental analysis that shows these alternative regularizers can improve continual learning performance across a range of supervised learning tasks and model architectures. The alternative regularizers prove to be less sensitive to hyperparameters while demonstrating better training in individual tasks, sustaining trainability as new tasks arrive, and achieving better generalization performance.
Abstract:This paper addresses the pursuit-evasion problem involving three agents -- a purser, an evader, and a defender. We develop cooperative guidance laws for the evader-defender team that guarantee that the defender intercepts the pursuer before it reaches the vicinity of the evader. Unlike heuristic methods, optimal control, differential game formulation, and recently proposed time-constrained guidance techniques, we propose a geometric solution to safeguard the evader from the pursuer's incoming threat. The proposed strategy is computationally efficient and expected to be scalable as the number of agents increases. Another alluring feature of the proposed strategy is that the evader-defender team does not require the knowledge of the pursuer's strategy and that the pursuer's interception is guaranteed from arbitrary initial engagement geometries. We further show that the necessary error variables for the evader-defender team vanish within a time that can be exactly prescribed prior to the three-body engagement. Finally, we demonstrate the efficacy of the proposed cooperative defense strategy via simulation in diverse engagement scenarios.
Abstract:With the advent of high-quality speech synthesis, there is a lot of interest in controlling various prosodic attributes of speech. Speaking rate is an essential attribute towards modelling the expressivity of speech. In this work, we propose a novel approach to control the speaking rate for non-autoregressive TTS. We achieve this by conditioning the speaking rate inside the duration predictor, allowing implicit speaking rate control. We show the benefits of this approach by synthesising audio at various speaking rate factors and measuring the quality of speaking rate-controlled synthesised speech. Further, we study the effect of the speaking rate distribution of the training data towards effective rate control. Finally, we fine-tune a baseline pretrained TTS model to obtain speaking rate control TTS. We provide various analyses to showcase the benefits of using this proposed approach, along with objective as well as subjective metrics. We find that the proposed methods have higher subjective scores and lower speaker rate errors across many speaking rate factors over the baseline.
Abstract:In continual learning, plasticity refers to the ability of an agent to quickly adapt to new information. Neural networks are known to lose plasticity when processing non-stationary data streams. In this paper, we propose L2 Init, a very simple approach for maintaining plasticity by incorporating in the loss function L2 regularization toward initial parameters. This is very similar to standard L2 regularization (L2), the only difference being that L2 regularizes toward the origin. L2 Init is simple to implement and requires selecting only a single hyper-parameter. The motivation for this method is the same as that of methods that reset neurons or parameter values. Intuitively, when recent losses are insensitive to particular parameters, these parameters drift toward their initial values. This prepares parameters to adapt quickly to new tasks. On simple problems representative of different types of nonstationarity in continual learning, we demonstrate that L2 Init consistently mitigates plasticity loss. We additionally find that our regularization term reduces parameter magnitudes and maintains a high effective feature rank.
Abstract:Deviations from the approved design or processes during mass production can lead to unforeseen risks. However, these changes are sometimes necessary due to changes in the product design characteristics or an adaptation in the manufacturing process. A major challenge is to identify these risks early in the workflow so that failures leading to warranty claims can be avoided. We developed Fountain as a contextual assistant integrated in the deviation management workflow that helps in identifying the risks based on the description of the existing design and process criteria and the proposed deviation. In the manufacturing context, it is important that the assistant provides recommendations that are explainable and consistent. We achieve this through a combination of the following two components 1) language models finetuned for domain specific semantic similarity and, 2) knowledge representation in the form of a property graph derived from the bill of materials, Failure Modes and Effect Analysis (FMEA) and prior failures reported by customers. Here, we present the nuances of selecting and adapting pretrained language models for an engineering domain, continuous model updates based on user interaction with the contextual assistant and creating the causal chain for explainable recommendations based on the knowledge representation. Additionally, we demonstrate that the model adaptation is feasible using moderate computational infrastructure already available to most engineering teams in manufacturing organizations and inference can be performed on standard CPU only instances for integration with existing applications making these methods easily deployable.
Abstract:Automatic speech recognition (ASR) performance has improved drastically in recent years, mainly enabled by self-supervised learning (SSL) based acoustic models such as wav2vec2 and large-scale multi-lingual training like Whisper. A huge challenge still exists for low-resource languages where the availability of both audio and text is limited. This is further complicated by the presence of multiple dialects like in Indian languages. However, many Indian languages can be grouped into the same families and share the same script and grammatical structure. This is where a lot of adaptation and fine-tuning techniques can be applied to overcome the low-resource nature of the data by utilising well-resourced similar languages. In such scenarios, it is important to understand the extent to which each modality, like acoustics and text, is important in building a reliable ASR. It could be the case that an abundance of acoustic data in a language reduces the need for large text-only corpora. Or, due to the availability of various pretrained acoustic models, the vice-versa could also be true. In this proposed special session, we encourage the community to explore these ideas with the data in two low-resource Indian languages of Bengali and Bhojpuri. These approaches are not limited to Indian languages, the solutions are potentially applicable to various languages spoken around the world.