With the advent of high-quality speech synthesis, there is a lot of interest in controlling various prosodic attributes of speech. Speaking rate is an essential attribute towards modelling the expressivity of speech. In this work, we propose a novel approach to control the speaking rate for non-autoregressive TTS. We achieve this by conditioning the speaking rate inside the duration predictor, allowing implicit speaking rate control. We show the benefits of this approach by synthesising audio at various speaking rate factors and measuring the quality of speaking rate-controlled synthesised speech. Further, we study the effect of the speaking rate distribution of the training data towards effective rate control. Finally, we fine-tune a baseline pretrained TTS model to obtain speaking rate control TTS. We provide various analyses to showcase the benefits of using this proposed approach, along with objective as well as subjective metrics. We find that the proposed methods have higher subjective scores and lower speaker rate errors across many speaking rate factors over the baseline.