University of Illinois Urbana Champaign and Cisco
Abstract:Latest developments in Large Multimodal Models (LMMs) have broadened their capabilities to include video understanding. Specifically, Text-to-video (T2V) models have made significant progress in quality, comprehension, and duration, excelling at creating videos from simple textual prompts. Yet, they still frequently produce hallucinated content that clearly signals the video is AI-generated. We introduce ViBe: a large-scale Text-to-Video Benchmark of hallucinated videos from T2V models. We identify five major types of hallucination: Vanishing Subject, Numeric Variability, Temporal Dysmorphia, Omission Error, and Physical Incongruity. Using 10 open-source T2V models, we developed the first large-scale dataset of hallucinated videos, comprising 3,782 videos annotated by humans into these five categories. ViBe offers a unique resource for evaluating the reliability of T2V models and provides a foundation for improving hallucination detection and mitigation in video generation. We establish classification as a baseline and present various ensemble classifier configurations, with the TimeSFormer + CNN combination yielding the best performance, achieving 0.345 accuracy and 0.342 F1 score. This benchmark aims to drive the development of robust T2V models that produce videos more accurately aligned with input prompts.
Abstract:In this work, we introduce SeQuiFi, a novel approach for mitigating catastrophic forgetting (CF) in speech emotion recognition (SER). SeQuiFi adopts a sequential class-finetuning strategy, where the model is fine-tuned incrementally on one emotion class at a time, preserving and enhancing retention for each class. While various state-of-the-art (SOTA) methods, such as regularization-based, memory-based, and weight-averaging techniques, have been proposed to address CF, it still remains a challenge, particularly with diverse and multilingual datasets. Through extensive experiments, we demonstrate that SeQuiFi significantly outperforms both vanilla fine-tuning and SOTA continual learning techniques in terms of accuracy and F1 scores on multiple benchmark SER datasets, including CREMA-D, RAVDESS, Emo-DB, MESD, and SHEMO, covering different languages.
Abstract:In this study, for the first time, we extensively investigate whether music foundation models (MFMs) or speech foundation models (SFMs) work better for singing voice deepfake detection (SVDD), which has recently attracted attention in the research community. For this, we perform a comprehensive comparative study of state-of-the-art (SOTA) MFMs (MERT variants and music2vec) and SFMs (pre-trained for general speech representation learning as well as speaker recognition). We show that speaker recognition SFM representations perform the best amongst all the foundation models (FMs), and this performance can be attributed to its higher efficacy in capturing the pitch, tone, intensity, etc, characteristics present in singing voices. To our end, we also explore the fusion of FMs for exploiting their complementary behavior for improved SVDD, and we propose a novel framework, FIONA for the same. With FIONA, through the synchronization of x-vector (speaker recognition SFM) and MERT-v1-330M (MFM), we report the best performance with the lowest Equal Error Rate (EER) of 13.74 %, beating all the individual FMs as well as baseline FM fusions and achieving SOTA results.
Abstract:Code Search is a key task that many programmers often have to perform while developing solutions to problems. Current methodologies suffer from an inability to perform accurately on prompts that contain some ambiguity or ones that require additional context relative to a code-base. We introduce the approach of using Retrieval Augmented Generation (RAG) powered agents to inject information into user prompts allowing for better inputs into embedding models. By utilizing RAG, agents enhance user queries with relevant details from GitHub repositories, making them more informative and contextually aligned. Additionally, we introduce a multi-stream ensemble approach which when paired with agentic workflow can obtain improved retrieval accuracy, which we deploy on application called repo-rift.com. Experimental results on the CodeSearchNet dataset demonstrate that RepoRift significantly outperforms existing methods, achieving an 78.2% success rate at Success@10 and a 34.6% success rate at Success@1. This research presents a substantial advancement in semantic code search, highlighting the potential of agentic LLMs and RAG to enhance code retrieval systems.
Abstract:Emotion Recognition (ER), Gender Recognition (GR), and Age Estimation (AE) constitute paralinguistic tasks that rely not on the spoken content but primarily on speech characteristics such as pitch and tone. While previous research has made significant strides in developing models for each task individually, there has been comparatively less emphasis on concurrently learning these tasks, despite their inherent interconnectedness. As such in this demonstration, we present PERSONA, an application for predicting ER, GR, and AE with a single model in the backend. One notable point is we show that representations from speaker recognition pre-trained model (PTM) is better suited for such a multi-task learning format than the state-of-the-art (SOTA) self-supervised (SSL) PTM by carrying out a comparative study. Our methodology obviates the need for deploying separate models for each task and can potentially conserve resources and time during the training and deployment phases.
Abstract:In this work, we focus on the detection of depression through speech analysis. Previous research has widely explored features extracted from pre-trained models (PTMs) primarily trained for paralinguistic tasks. Although these features have led to sufficient advances in speech-based depression detection, their performance declines in real-world settings. To address this, in this paper, we introduce ComFeAT, an application that employs a CNN model trained on a combination of features extracted from PTMs, a.k.a. neural features and spectral features to enhance depression detection. Spectral features are robust to domain variations, but, they are not as good as neural features in performance, suprisingly, combining them shows complementary behavior and improves over both neural and spectral features individually. The proposed method also improves over previous state-of-the-art (SOTA) works on E-DAIC benchmark.
Abstract:In this paper, we focus on audio violence detection (AVD). AVD is necessary for several reasons, especially in the context of maintaining safety, preventing harm, and ensuring security in various environments. This calls for accurate AVD systems. Like many related applications in audio processing, the most common approach for improving the performance, would be by leveraging self-supervised (SSL) pre-trained models (PTMs). However, as these SSL models are very large models with million of parameters and this can hinder real-world deployment especially in compute-constraint environment. To resolve this, we propose the usage of speaker recognition models which are much smaller compared to the SSL models. Experimentation with speaker recognition model embeddings with SVM & Random Forest as classifiers, we show that speaker recognition model embeddings perform the best in comparison to state-of-the-art (SOTA) SSL models and achieve SOTA results.
Abstract:User alignment is crucial for adapting general-purpose language models (LMs) to downstream tasks, but human annotations are often not available for all types of instructions, especially those with customized constraints. We observe that user instructions typically contain constraints. While assessing response quality in terms of the whole instruction is often costly, efficiently evaluating the satisfaction rate of constraints is feasible. We investigate common constraints in NLP tasks, categorize them into three classes based on the types of their arguments, and propose a unified framework, ACT (Aligning to ConsTraints), to automatically produce supervision signals for user alignment with constraints. Specifically, ACT uses constraint verifiers, which are typically easy to implement in practice, to compute constraint satisfaction rate (CSR) of each response. It samples multiple responses for each prompt and collect preference labels based on their CSR automatically. Subsequently, ACT adapts the LM to the target task through a ranking-based learning process. Experiments on fine-grained entity typing, abstractive summarization, and temporal question answering show that ACT is able to enhance LMs' capability to adhere to different classes of constraints, thereby improving task performance. Further experiments show that the constraint-following capabilities are transferable.
Abstract:Graph Neural Networks (GNNs) have been a powerful tool for node classification tasks in complex networks. However, their decision-making processes remain a black-box to users, making it challenging to understand the reasoning behind their predictions. Counterfactual explanations (CFE) have shown promise in enhancing the interpretability of machine learning models. Prior approaches to compute CFE for GNNS often are learning-based approaches that require training additional graphs. In this paper, we propose a semivalue-based, non-learning approach to generate CFE for node classification tasks, eliminating the need for any additional training. Our results reveals that computing Banzhaf values requires lower sample complexity in identifying the counterfactual explanations compared to other popular methods such as computing Shapley values. Our empirical evidence indicates computing Banzhaf values can achieve up to a fourfold speed up compared to Shapley values. We also design a thresholding method for computing Banzhaf values and show theoretical and empirical results on its robustness in noisy environments, making it superior to Shapley values. Furthermore, the thresholded Banzhaf values are shown to enhance efficiency without compromising the quality (i.e., fidelity) in the explanations in three popular graph datasets.
Abstract:Biomedical research now commonly integrates diverse data types or views from the same individuals to better understand the pathobiology of complex diseases, but the challenge lies in meaningfully integrating these diverse views. Existing methods often require the same type of data from all views (cross-sectional data only or longitudinal data only) or do not consider any class outcome in the integration method, presenting limitations. To overcome these limitations, we have developed a pipeline that harnesses the power of statistical and deep learning methods to integrate cross-sectional and longitudinal data from multiple sources. Additionally, it identifies key variables contributing to the association between views and the separation among classes, providing deeper biological insights. This pipeline includes variable selection/ranking using linear and nonlinear methods, feature extraction using functional principal component analysis and Euler characteristics, and joint integration and classification using dense feed-forward networks and recurrent neural networks. We applied this pipeline to cross-sectional and longitudinal multi-omics data (metagenomics, transcriptomics, and metabolomics) from an inflammatory bowel disease (IBD) study and we identified microbial pathways, metabolites, and genes that discriminate by IBD status, providing information on the etiology of IBD. We conducted simulations to compare the two feature extraction methods. The proposed pipeline is available from the following GitHub repository: https://github.com/lasandrall/DeepIDA-GRU.