Abstract:In this study, we present a multimodal framework for predicting neuro-facial disorders by capturing both vocal and facial cues. We hypothesize that explicitly disentangling shared and modality-specific representations within multimodal foundation model embeddings can enhance clinical interpretability and generalization. To validate this hypothesis, we propose DIVINE a fully disentangled multimodal framework that operates on representations extracted from state-of-the-art (SOTA) audio and video foundation models, incorporating hierarchical variational bottlenecks, sparse gated fusion, and learnable symptom tokens. DIVINE operates in a multitask learning setup to jointly predict diagnostic categories (Healthy Control,ALS, Stroke) and severity levels (Mild, Moderate, Severe). The model is trained using synchronized audio and video inputs and evaluated on the Toronto NeuroFace dataset under full (audio-video) as well as single-modality (audio-only and video-only) test conditions. Our proposed approach, DIVINE achieves SOTA result, with the DeepSeek-VL2 and TRILLsson combination reaching 98.26% accuracy and 97.51% F1-score. Under modality-constrained scenarios, the framework performs well, showing strong generalization when tested with video-only or audio-only inputs. It consistently yields superior performance compared to unimodal models and baseline fusion techniques. To the best of our knowledge, DIVINE is the first framework that combines cross-modal disentanglement, adaptive fusion, and multitask learning to comprehensively assess neurological disorders using synchronized speech and facial video.
Abstract:We propose a unified framework for not only attributing synthetic speech to its source but also for detecting speech generated by synthesizers that were not encountered during training. This requires methods that move beyond simple detection to support both detailed forensic analysis and open-set generalization. To address this, we introduce SIGNAL, a hybrid framework that combines speech foundation models (SFMs) with graph-based modeling and open-set-aware inference. Our framework integrates Graph Neural Networks (GNNs) and a k-Nearest Neighbor (KNN) classifier, allowing it to capture meaningful relationships between utterances and recognize speech that doesn`t belong to any known generator. It constructs a query-conditioned graph over generator class prototypes, enabling the GNN to reason over relationships among candidate generators, while the KNN branch supports open-set detection via confidence-based thresholding. We evaluate SIGNAL using the DiffSSD dataset, which offers a diverse mix of real speech and synthetic audio from both open-source and commercial diffusion-based TTS systems. To further assess generalization, we also test on the SingFake benchmark. Our results show that SIGNAL consistently improves performance across both tasks, with Mamba-based embeddings delivering especially strong results. To the best of our knowledge, this is the first study to unify graph-based learning and open-set detection for tracing synthetic speech back to its origin.
Abstract:In this work, we address the challenge of generalizable audio deepfake detection (ADD) across diverse speech synthesis paradigms-including conventional text-to-speech (TTS) systems and modern diffusion or flow-matching (FM) based generators. Prior work has mostly targeted individual synthesis families and often fails to generalize across paradigms due to overfitting to generation-specific artifacts. We hypothesize that synthetic speech, irrespective of its generative origin, leaves behind shared structural distortions in the embedding space that can be aligned through geometry-aware modeling. To this end, we propose RHYME, a unified detection framework that fuses utterance-level embeddings from diverse pretrained speech encoders using non-Euclidean projections. RHYME maps representations into hyperbolic and spherical manifolds-where hyperbolic geometry excels at modeling hierarchical generator families, and spherical projections capture angular, energy-invariant cues such as periodic vocoder artifacts. The fused representation is obtained via Riemannian barycentric averaging, enabling synthesis-invariant alignment. RHYME outperforms individual PTMs and homogeneous fusion baselines, achieving top performance and setting new state-of-the-art in cross-paradigm ADD.




Abstract:In this work, we address the problem of finegrained traceback of emotional and manipulation characteristics from synthetically manipulated speech. We hypothesize that combining semantic-prosodic cues captured by Speech Foundation Models (SFMs) with fine-grained spectral dynamics from auditory representations can enable more precise tracing of both emotion and manipulation source. To validate this hypothesis, we introduce MiCuNet, a novel multitask framework for fine-grained tracing of emotional and manipulation attributes in synthetically generated speech. Our approach integrates SFM embeddings with spectrogram-based auditory features through a mixed-curvature projection mechanism that spans Hyperbolic, Euclidean, and Spherical spaces guided by a learnable temporal gating mechanism. Our proposed method adopts a multitask learning setup to simultaneously predict original emotions, manipulated emotions, and manipulation sources on the EmoFake dataset (EFD) across both English and Chinese subsets. MiCuNet yields consistent improvements, consistently surpassing conventional fusion strategies. To the best of our knowledge, this work presents the first study to explore a curvature-adaptive framework specifically tailored for multitask tracking in synthetic speech.




Abstract:In this study, we address the challenge of depression detection from speech, focusing on the potential of non-semantic features (NSFs) to capture subtle markers of depression. While prior research has leveraged various features for this task, NSFs-extracted from pre-trained models (PTMs) designed for non-semantic tasks such as paralinguistic speech processing (TRILLsson), speaker recognition (x-vector), and emotion recognition (emoHuBERT)-have shown significant promise. However, the potential of combining these diverse features has not been fully explored. In this work, we demonstrate that the amalgamation of NSFs results in complementary behavior, leading to enhanced depression detection performance. Furthermore, to our end, we introduce a simple novel framework, FuSeR, designed to effectively combine these features. Our results show that FuSeR outperforms models utilizing individual NSFs as well as baseline fusion techniques and obtains state-of-the-art (SOTA) performance in E-DAIC benchmark with RMSE of 5.51 and MAE of 4.48, establishing it as a robust approach for depression detection.




Abstract:Transformers have evolved with great success in various artificial intelligence tasks. Thanks to our recent prevalence of self-attention mechanisms, which capture long-term dependency, phenomenal outcomes in speech processing and recognition tasks have been produced. The paper presents a comprehensive survey of transformer techniques oriented in speech modality. The main contents of this survey include (1) background of traditional ASR, end-to-end transformer ecosystem, and speech transformers (2) foundational models in a speech via lingualism paradigm, i.e., monolingual, bilingual, multilingual, and cross-lingual (3) dataset and languages, acoustic features, architecture, decoding, and evaluation metric from a specific topological lingualism perspective (4) popular speech transformer toolkit for building end-to-end ASR systems. Finally, highlight the discussion of open challenges and potential research directions for the community to conduct further research in this domain.




Abstract:Autism Spectrum Disorder (ASD) is a complex neuro-developmental challenge, presenting a spectrum of difficulties in social interaction, communication, and the expression of repetitive behaviors in different situations. This increasing prevalence underscores the importance of ASD as a major public health concern and the need for comprehensive research initiatives to advance our understanding of the disorder and its early detection methods. This study introduces a novel hierarchical feature fusion method aimed at enhancing the early detection of ASD in children through the analysis of code-switched speech (English and Hindi). Employing advanced audio processing techniques, the research integrates acoustic, paralinguistic, and linguistic information using Transformer Encoders. This innovative fusion strategy is designed to improve classification robustness and accuracy, crucial for early and precise ASD identification. The methodology involves collecting a code-switched speech corpus, CoSAm, from children diagnosed with ASD and a matched control group. The dataset comprises 61 voice recordings from 30 children diagnosed with ASD and 31 from neurotypical children, aged between 3 and 13 years, resulting in a total of 159.75 minutes of voice recordings. The feature analysis focuses on MFCCs and extensive statistical attributes to capture speech pattern variability and complexity. The best model performance is achieved using a hierarchical fusion technique with an accuracy of 98.75% using a combination of acoustic and linguistic features first, followed by paralinguistic features in a hierarchical manner.



Abstract:In this work, we focus on the detection of depression through speech analysis. Previous research has widely explored features extracted from pre-trained models (PTMs) primarily trained for paralinguistic tasks. Although these features have led to sufficient advances in speech-based depression detection, their performance declines in real-world settings. To address this, in this paper, we introduce ComFeAT, an application that employs a CNN model trained on a combination of features extracted from PTMs, a.k.a. neural features and spectral features to enhance depression detection. Spectral features are robust to domain variations, but, they are not as good as neural features in performance, suprisingly, combining them shows complementary behavior and improves over both neural and spectral features individually. The proposed method also improves over previous state-of-the-art (SOTA) works on E-DAIC benchmark.
Abstract:Code-switching is a common communication phenomenon where individuals alternate between two or more languages or linguistic styles within a single conversation. Autism Spectrum Disorder (ASD) is a developmental disorder posing challenges in social interaction, communication, and repetitive behaviors. Detecting ASD in individuals with code-switch scenario presents unique challenges. In this paper, we address this problem by building an application NeuRO which aims to detect potential signs of autism in code-switched conversations, facilitating early intervention and support for individuals with ASD.




Abstract:In this paper, we describe our participation in the subtask 1 of CASE-2022, Event Causality Identification with Casual News Corpus. We address the Causal Relation Identification (CRI) task by exploiting a set of simple yet complementary techniques for fine-tuning language models (LMs) on a small number of annotated examples (i.e., a few-shot configuration). We follow a prompt-based prediction approach for fine-tuning LMs in which the CRI task is treated as a masked language modeling problem (MLM). This approach allows LMs natively pre-trained on MLM problems to directly generate textual responses to CRI-specific prompts. We compare the performance of this method against ensemble techniques trained on the entire dataset. Our best-performing submission was trained only with 256 instances per class, a small portion of the entire dataset, and yet was able to obtain the second-best precision (0.82), third-best accuracy (0.82), and an F1-score (0.85) very close to what was reported by the winner team (0.86).