CIMeC - Center for Mind/Brain Sciences, University of Trento
Abstract:Representations from deep neural networks (DNNs) have proven remarkably predictive of neural activity involved in both visual and linguistic processing. Despite these successes, most studies to date concern unimodal DNNs, encoding either visual or textual input but not both. Yet, there is growing evidence that human meaning representations integrate linguistic and sensory-motor information. Here we investigate whether the integration of multimodal information operated by current vision-and-language DNN models (VLMs) leads to representations that are more aligned with human brain activity than those obtained by language-only and vision-only DNNs. We focus on fMRI responses recorded while participants read concept words in the context of either a full sentence or an accompanying picture. Our results reveal that VLM representations correlate more strongly than language- and vision-only DNNs with activations in brain areas functionally related to language processing. A comparison between different types of visuo-linguistic architectures shows that recent generative VLMs tend to be less brain-aligned than previous architectures with lower performance on downstream applications. Moreover, through an additional analysis comparing brain vs. behavioural alignment across multiple VLMs, we show that -- with one remarkable exception -- representations that strongly align with behavioural judgments do not correlate highly with brain responses. This indicates that brain similarity does not go hand in hand with behavioural similarity, and vice versa.
Abstract:Visual storytelling consists in generating a natural language story given a temporally ordered sequence of images. This task is not only challenging for models, but also very difficult to evaluate with automatic metrics since there is no consensus about what makes a story 'good'. In this paper, we introduce a novel method that measures story quality in terms of human likeness regarding three key aspects highlighted in previous work: visual grounding, coherence, and repetitiveness. We then use this method to evaluate the stories generated by several models, showing that the foundation model LLaVA obtains the best result, but only slightly so compared to TAPM, a 50-times smaller visual storytelling model. Upgrading the visual and language components of TAPM results in a model that yields competitive performance with a relatively low number of parameters. Finally, we carry out a human evaluation study, whose results suggest that a 'good' story may require more than a human-like level of visual grounding, coherence, and repetition.
Abstract:There is an increasing trend towards evaluating NLP models with LLM-generated judgments instead of human judgments. In the absence of a comparison against human data, this raises concerns about the validity of these evaluations; in case they are conducted with proprietary models, this also raises concerns over reproducibility. We provide JUDGE-BENCH, a collection of 20 NLP datasets with human annotations, and comprehensively evaluate 11 current LLMs, covering both open-weight and proprietary models, for their ability to replicate the annotations. Our evaluations show that each LLM exhibits a large variance across datasets in its correlation to human judgments. We conclude that LLMs are not yet ready to systematically replace human judges in NLP.
Abstract:Many recent language model (LM) interpretability studies have adopted the circuits framework, which aims to find the minimal computational subgraph, or circuit, that explains LM behavior on a given task. Most studies determine which edges belong in a LM's circuit by performing causal interventions on each edge independently, but this scales poorly with model size. Edge attribution patching (EAP), gradient-based approximation to interventions, has emerged as a scalable but imperfect solution to this problem. In this paper, we introduce a new method - EAP with integrated gradients (EAP-IG) - that aims to better maintain a core property of circuits: faithfulness. A circuit is faithful if all model edges outside the circuit can be ablated without changing the model's performance on the task; faithfulness is what justifies studying circuits, rather than the full model. Our experiments demonstrate that circuits found using EAP are less faithful than those found using EAP-IG, even though both have high node overlap with circuits found previously using causal interventions. We conclude more generally that when using circuits to compare the mechanisms models use to solve tasks, faithfulness, not overlap, is what should be measured.
Abstract:While human speakers use a variety of different expressions when describing the same object in an image, giving rise to a distribution of plausible labels driven by pragmatic constraints, the extent to which current Vision \& Language Large Language Models (VLLMs) can mimic this crucial feature of language use is an open question. This applies to common, everyday objects, but it is particularly interesting for uncommon or novel objects for which a category label may be lacking or fuzzy. Furthermore, humans show clear production preferences for highly context-sensitive expressions, such as the quantifiers `few' or `most'. In our work, we evaluate VLLMs (FROMAGe, BLIP-2, LLaVA) on three categories (nouns, attributes, and quantifiers) where humans show great subjective variability concerning the distribution over plausible labels, using datasets and resources mostly under-explored in previous work. Our results reveal mixed evidence on the ability of VLLMs to capture human naming preferences, with all models failing in tasks that require high-level reasoning such as assigning quantifiers.
Abstract:In everyday language use, speakers frequently utter and interpret sentences that are semantically underspecified, namely, whose content is insufficient to fully convey their message or interpret them univocally. For example, to interpret the underspecified sentence "Don't spend too much", which leaves implicit what (not) to spend, additional linguistic context or outside knowledge is needed. In this work, we propose a novel Dataset of semantically Underspecified Sentences grouped by Type (DUST) and use it to study whether pre-trained language models (LMs) correctly identify and interpret underspecified sentences. We find that newer LMs are reasonably able to identify underspecified sentences when explicitly prompted. However, interpreting them correctly is much harder for any LMs. Our experiments show that when interpreting underspecified sentences, LMs exhibit little uncertainty, contrary to what theoretical accounts of underspecification would predict. Overall, our study reveals limitations in current models' processing of sentence semantics and highlights the importance of using naturalistic data and communicative scenarios when evaluating LMs' language capabilities.
Abstract:There is an intricate relation between the properties of an image and how humans behave while describing the image. This behavior shows ample variation, as manifested in human signals such as eye movements and when humans start to describe the image. Despite the value of such signals of visuo-linguistic variation, they are virtually disregarded in the training of current pretrained models, which motivates further investigation. Using a corpus of Dutch image descriptions with concurrently collected eye-tracking data, we explore the nature of the variation in visuo-linguistic signals, and find that they correlate with each other. Given this result, we hypothesize that variation stems partly from the properties of the images, and explore whether image representations encoded by pretrained vision encoders can capture such variation. Our results indicate that pretrained models do so to a weak-to-moderate degree, suggesting that the models lack biases about what makes a stimulus complex for humans and what leads to variations in human outputs.
Abstract:A proper evaluation of stories generated for a sequence of images -- the task commonly referred to as visual storytelling -- must consider multiple aspects, such as coherence, grammatical correctness, and visual grounding. In this work, we focus on evaluating the degree of grounding, that is, the extent to which a story is about the entities shown in the images. We analyze current metrics, both designed for this purpose and for general vision-text alignment. Given their observed shortcomings, we propose a novel evaluation tool, GROOViST, that accounts for cross-modal dependencies, temporal misalignments (the fact that the order in which entities appear in the story and the image sequence may not match), and human intuitions on visual grounding. An additional advantage of GROOViST is its modular design, where the contribution of each component can be assessed and interpreted individually.
Abstract:Despite the impressive performance achieved by pre-trained language-and-vision models in downstream tasks, it remains an open question whether this reflects a proper understanding of image-text interaction. In this work, we explore to what extent they handle basic linguistic constructions -- active-passive voice, coordination, and relative clauses -- that even preschool children can typically master. We present BLA, a novel, automatically constructed benchmark to evaluate multimodal models on these Basic Language Abilities. We show that different types of Transformer-based systems, such as CLIP, ViLBERT, and BLIP2, generally struggle with BLA in a zero-shot setting, in line with previous findings. Our experiments, in particular, show that most of the tested models only marginally benefit when fine-tuned or prompted with construction-specific samples. Yet, the generative BLIP2 shows promising trends, especially in an in-context learning setting. This opens the door to using BLA not only as an evaluation benchmark but also to improve models' basic language abilities.
Abstract:Animacy - whether an entity is alive and sentient - is fundamental to cognitive processing, impacting areas such as memory, vision, and language. However, animacy is not always expressed directly in language: in English it often manifests indirectly, in the form of selectional constraints on verbs and adjectives. This poses a potential issue for transformer language models (LMs): they often train only on text, and thus lack access to extralinguistic information from which humans learn about animacy. We ask: how does this impact LMs' animacy processing - do they still behave as humans do? We answer this question using open-source LMs. Like previous studies, we find that LMs behave much like humans when presented with entities whose animacy is typical. However, we also show that even when presented with stories about atypically animate entities, such as a peanut in love, LMs adapt: they treat these entities as animate, though they do not adapt as well as humans. Even when the context indicating atypical animacy is very short, LMs pick up on subtle clues and change their behavior. We conclude that despite the limited signal through which LMs can learn about animacy, they are indeed sensitive to the relevant lexical semantic nuances available in English.