Abstract:In this study, we undertake a reproducibility analysis of 'Learning Fair Graph Representations Via Automated Data Augmentations' by Ling et al. (2022). We assess the validity of the original claims focused on node classification tasks and explore the performance of the Graphair framework in link prediction tasks. Our investigation reveals that we can partially reproduce one of the original three claims and fully substantiate the other two. Additionally, we broaden the application of Graphair from node classification to link prediction across various datasets. Our findings indicate that, while Graphair demonstrates a comparable fairness-accuracy trade-off to baseline models for mixed dyadic-level fairness, it has a superior trade-off for subgroup dyadic-level fairness. These findings underscore Graphair's potential for wider adoption in graph-based learning. Our code base can be found on GitHub at https://github.com/juellsprott/graphair-reproducibility.
Abstract:While human speakers use a variety of different expressions when describing the same object in an image, giving rise to a distribution of plausible labels driven by pragmatic constraints, the extent to which current Vision \& Language Large Language Models (VLLMs) can mimic this crucial feature of language use is an open question. This applies to common, everyday objects, but it is particularly interesting for uncommon or novel objects for which a category label may be lacking or fuzzy. Furthermore, humans show clear production preferences for highly context-sensitive expressions, such as the quantifiers `few' or `most'. In our work, we evaluate VLLMs (FROMAGe, BLIP-2, LLaVA) on three categories (nouns, attributes, and quantifiers) where humans show great subjective variability concerning the distribution over plausible labels, using datasets and resources mostly under-explored in previous work. Our results reveal mixed evidence on the ability of VLLMs to capture human naming preferences, with all models failing in tasks that require high-level reasoning such as assigning quantifiers.