Abstract:Vision transformers (ViTs) have dominated computer vision in recent years. However, ViTs are computationally expensive and not well suited for mobile devices; this led to the prevalence of convolutional neural network (CNN) and ViT-based hybrid models for mobile vision applications. Recently, Vision GNN (ViG) and CNN hybrid models have also been proposed for mobile vision tasks. However, all of these methods remain slower compared to pure CNN-based models. In this work, we propose Multi-Level Dilated Convolutions to devise a purely CNN-based mobile backbone. Using Multi-Level Dilated Convolutions allows for a larger theoretical receptive field than standard convolutions. Different levels of dilation also allow for interactions between the short-range and long-range features in an image. Experiments show that our proposed model outperforms state-of-the-art (SOTA) mobile CNN, ViT, ViG, and hybrid architectures in terms of accuracy and/or speed on image classification, object detection, instance segmentation, and semantic segmentation. Our fastest model, RapidNet-Ti, achieves 76.3\% top-1 accuracy on ImageNet-1K with 0.9 ms inference latency on an iPhone 13 mini NPU, which is faster and more accurate than MobileNetV2x1.4 (74.7\% top-1 with 1.0 ms latency). Our work shows that pure CNN architectures can beat SOTA hybrid and ViT models in terms of accuracy and speed when designed properly.
Abstract:Catastrophic forgetting is a significant challenge in online continual learning (OCL), especially for non-stationary data streams that do not have well-defined task boundaries. This challenge is exacerbated by the memory constraints and privacy concerns inherent in rehearsal buffers. To tackle catastrophic forgetting, in this paper, we introduce Online-LoRA, a novel framework for task-free OCL. Online-LoRA allows to finetune pre-trained Vision Transformer (ViT) models in real-time to address the limitations of rehearsal buffers and leverage pre-trained models' performance benefits. As the main contribution, our approach features a novel online weight regularization strategy to identify and consolidate important model parameters. Moreover, Online-LoRA leverages the training dynamics of loss values to enable the automatic recognition of the data distribution shifts. Extensive experiments across many task-free OCL scenarios and benchmark datasets (including CIFAR-100, ImageNet-R, ImageNet-S, CUB-200 and CORe50) demonstrate that Online-LoRA can be robustly adapted to various ViT architectures, while achieving better performance compared to SOTA methods. Our code will be publicly available at: https://github.com/Christina200/Online-LoRA-official.git.
Abstract:This paper proposes Skip2-LoRA as a lightweight fine-tuning method for deep neural networks to address the gap between pre-trained and deployed models. In our approach, trainable LoRA (low-rank adaptation) adapters are inserted between the last layer and every other layer to enhance the network expressive power while keeping the backward computation cost low. This architecture is well-suited to cache intermediate computation results of the forward pass and then can skip the forward computation of seen samples as training epochs progress. We implemented the combination of the proposed architecture and cache, denoted as Skip2-LoRA, and tested it on a $15 single board computer. Our results show that Skip2-LoRA reduces the fine-tuning time by 90.0% on average compared to the counterpart that has the same number of trainable parameters while preserving the accuracy, while taking only a few seconds on the microcontroller board.
Abstract:Fake news threatens democracy and exacerbates the polarization and divisions in society; therefore, accurately detecting online misinformation is the foundation of addressing this issue. We present CrediRAG, the first fake news detection model that combines language models with access to a rich external political knowledge base with a dense social network to detect fake news across social media at scale. CrediRAG uses a news retriever to initially assign a misinformation score to each post based on the source credibility of similar news articles to the post title content. CrediRAG then improves the initial retrieval estimations through a novel weighted post-to-post network connected based on shared commenters and weighted by the average stance of all shared commenters across every pair of posts. We achieve 11% increase in the F1-score in detecting misinformative posts over state-of-the-art methods. Extensive experiments conducted on curated real-world Reddit data of over 200,000 posts demonstrate the superior performance of CrediRAG on existing baselines. Thus, our approach offers a more accurate and scalable solution to combat the spread of fake news across social media platforms.
Abstract:In this paper, we introduce a low-cost and low-power tiny supervised on-device learning (ODL) core that can address the distributional shift of input data for human activity recognition. Although ODL for resource-limited edge devices has been studied recently, how exactly to provide the training labels to these devices at runtime remains an open-issue. To address this problem, we propose to combine an automatic data pruning with supervised ODL to reduce the number queries needed to acquire predicted labels from a nearby teacher device and thus save power consumption during model retraining. The data pruning threshold is automatically tuned, eliminating a manual threshold tuning. As a tinyML solution at a few mW for the human activity recognition, we design a supervised ODL core that supports our automatic data pruning using a 45nm CMOS process technology. We show that the required memory size for the core is smaller than the same-shaped multilayer perceptron (MLP) and the power consumption is only 3.39mW. Experiments using a human activity recognition dataset show that the proposed automatic data pruning reduces the communication volume by 55.7% and power consumption accordingly with only 0.9% accuracy loss.
Abstract:To compete with existing mobile architectures, MobileViG introduces Sparse Vision Graph Attention (SVGA), a fast token-mixing operator based on the principles of GNNs. However, MobileViG scales poorly with model size, falling at most 1% behind models with similar latency. This paper introduces Mobile Graph Convolution (MGC), a new vision graph neural network (ViG) module that solves this scaling problem. Our proposed mobile vision architecture, MobileViGv2, uses MGC to demonstrate the effectiveness of our approach. MGC improves on SVGA by increasing graph sparsity and introducing conditional positional encodings to the graph operation. Our smallest model, MobileViGv2-Ti, achieves a 77.7% top-1 accuracy on ImageNet-1K, 2% higher than MobileViG-Ti, with 0.9 ms inference latency on the iPhone 13 Mini NPU. Our largest model, MobileViGv2-B, achieves an 83.4% top-1 accuracy, 0.8% higher than MobileViG-B, with 2.7 ms inference latency. Besides image classification, we show that MobileViGv2 generalizes well to other tasks. For object detection and instance segmentation on MS COCO 2017, MobileViGv2-M outperforms MobileViG-M by 1.2 $AP^{box}$ and 0.7 $AP^{mask}$, and MobileViGv2-B outperforms MobileViG-B by 1.0 $AP^{box}$ and 0.7 $AP^{mask}$. For semantic segmentation on ADE20K, MobileViGv2-M achieves 42.9% $mIoU$ and MobileViGv2-B achieves 44.3% $mIoU$. Our code can be found at \url{https://github.com/SLDGroup/MobileViGv2}.
Abstract:Video-to-video synthesis models face significant challenges, such as ensuring consistent character generation across frames, maintaining smooth temporal transitions, and preserving quality during fast motion. The introduction of joint fully cross-frame self-attention mechanisms has improved character consistency, but this comes at the cost of increased computational complexity. This full cross-frame self-attention mechanism also incorporates redundant details and limits the number of frames that can be jointly edited due to its computational cost. Moreover, the lack of frames in cross-frame attention adversely affects temporal consistency and visual quality. To address these limitations, we propose a new adaptive motion-guided cross-frame attention mechanism that drastically reduces complexity while preserving semantic details and temporal consistency. Specifically, we selectively incorporate the moving regions of successive frames in cross-frame attention and sparsely include stationary regions based on optical flow sampling. This technique allows for an increased number of jointly edited frames without additional computational overhead. For longer duration of video editing, existing methods primarily focus on frame interpolation or flow-warping from jointly edited keyframes, which often results in blurry frames or reduced temporal consistency. To improve this, we introduce KV-caching of jointly edited frames and reuse the same KV across all intermediate frames, significantly enhancing both intermediate frame quality and temporal consistency. Overall, our motion-sampling method enables the use of around three times more keyframes than existing joint editing methods while maintaining superior prediction quality. Ada-VE achieves up to 4x speed-up when using fully-extended self-attention across 40 frames for joint editing, without compromising visual quality or temporal consistency.
Abstract:The Segment Anything Model (SAM), originally designed for general-purpose segmentation tasks, has been used recently for polyp segmentation. Nonetheless, fine-tuning SAM with data from new imaging centers or clinics poses significant challenges. This is because this necessitates the creation of an expensive and time-intensive annotated dataset, along with the potential for variability in user prompts during inference. To address these issues, we propose a robust fine-tuning technique, PP-SAM, that allows SAM to adapt to the polyp segmentation task with limited images. To this end, we utilize variable perturbed bounding box prompts (BBP) to enrich the learning context and enhance the model's robustness to BBP perturbations during inference. Rigorous experiments on polyp segmentation benchmarks reveal that our variable BBP perturbation significantly improves model resilience. Notably, on Kvasir, 1-shot fine-tuning boosts the DICE score by 20% and 37% with 50 and 100-pixel BBP perturbations during inference, respectively. Moreover, our experiments show that 1-shot, 5-shot, and 10-shot PP-SAM with 50-pixel perturbations during inference outperform a recent state-of-the-art (SOTA) polyp segmentation method by 26%, 7%, and 5% DICE scores, respectively. Our results motivate the broader applicability of our PP-SAM for other medical imaging tasks with limited samples. Our implementation is available at https://github.com/SLDGroup/PP-SAM.
Abstract:An efficient and effective decoding mechanism is crucial in medical image segmentation, especially in scenarios with limited computational resources. However, these decoding mechanisms usually come with high computational costs. To address this concern, we introduce EMCAD, a new efficient multi-scale convolutional attention decoder, designed to optimize both performance and computational efficiency. EMCAD leverages a unique multi-scale depth-wise convolution block, significantly enhancing feature maps through multi-scale convolutions. EMCAD also employs channel, spatial, and grouped (large-kernel) gated attention mechanisms, which are highly effective at capturing intricate spatial relationships while focusing on salient regions. By employing group and depth-wise convolution, EMCAD is very efficient and scales well (e.g., only 1.91M parameters and 0.381G FLOPs are needed when using a standard encoder). Our rigorous evaluations across 12 datasets that belong to six medical image segmentation tasks reveal that EMCAD achieves state-of-the-art (SOTA) performance with 79.4% and 80.3% reduction in #Params and #FLOPs, respectively. Moreover, EMCAD's adaptability to different encoders and versatility across segmentation tasks further establish EMCAD as a promising tool, advancing the field towards more efficient and accurate medical image analysis. Our implementation is available at https://github.com/SLDGroup/EMCAD.
Abstract:Vision graph neural networks (ViG) offer a new avenue for exploration in computer vision. A major bottleneck in ViGs is the inefficient k-nearest neighbor (KNN) operation used for graph construction. To solve this issue, we propose a new method for designing ViGs, Dynamic Axial Graph Construction (DAGC), which is more efficient than KNN as it limits the number of considered graph connections made within an image. Additionally, we propose a novel CNN-GNN architecture, GreedyViG, which uses DAGC. Extensive experiments show that GreedyViG beats existing ViG, CNN, and ViT architectures in terms of accuracy, GMACs, and parameters on image classification, object detection, instance segmentation, and semantic segmentation tasks. Our smallest model, GreedyViG-S, achieves 81.1% top-1 accuracy on ImageNet-1K, 2.9% higher than Vision GNN and 2.2% higher than Vision HyperGraph Neural Network (ViHGNN), with less GMACs and a similar number of parameters. Our largest model, GreedyViG-B obtains 83.9% top-1 accuracy, 0.2% higher than Vision GNN, with a 66.6% decrease in parameters and a 69% decrease in GMACs. GreedyViG-B also obtains the same accuracy as ViHGNN with a 67.3% decrease in parameters and a 71.3% decrease in GMACs. Our work shows that hybrid CNN-GNN architectures not only provide a new avenue for designing efficient models, but that they can also exceed the performance of current state-of-the-art models.