Abstract:With the rise of social media, misinformation has become increasingly prevalent, fueled largely by the spread of rumors. This study explores the use of Large Language Model (LLM) agents within a novel framework to simulate and analyze the dynamics of rumor propagation across social networks. To this end, we design a variety of LLM-based agent types and construct four distinct network structures to conduct these simulations. Our framework assesses the effectiveness of different network constructions and agent behaviors in influencing the spread of rumors. Our results demonstrate that the framework can simulate rumor spreading across more than one hundred agents in various networks with thousands of edges. The evaluations indicate that network structure, personas, and spreading schemes can significantly influence rumor dissemination, ranging from no spread to affecting 83\% of agents in iterations, thereby offering a realistic simulation of rumor spread in social networks.
Abstract:Extending Moore's law by augmenting complementary-metal-oxide semiconductor (CMOS) transistors with emerging nanotechnologies (X) has become increasingly important. Accelerating Monte Carlo algorithms that rely on random sampling with such CMOS+X technologies could have significant impact on a large number of fields from probabilistic machine learning, optimization to quantum simulation. In this paper, we show the combination of stochastic magnetic tunnel junction (sMTJ)-based probabilistic bits (p-bits) with versatile Field Programmable Gate Arrays (FPGA) to design a CMOS + X (X = sMTJ) prototype. Our approach enables high-quality true randomness that is essential for Monte Carlo based probabilistic sampling and learning. Our heterogeneous computer successfully performs probabilistic inference and asynchronous Boltzmann learning, despite device-to-device variations in sMTJs. A comprehensive comparison using a CMOS predictive process design kit (PDK) reveals that compact sMTJ-based p-bits replace 10,000 transistors while dissipating two orders of magnitude of less energy (2 fJ per random bit), compared to digital CMOS p-bits. Scaled and integrated versions of our CMOS + stochastic nanomagnet approach can significantly advance probabilistic computing and its applications in various domains by providing massively parallel and truly random numbers with extremely high throughput and energy-efficiency.