Abstract:This paper presents a review of the NTIRE 2024 challenge on night photography rendering. The goal of the challenge was to find solutions that process raw camera images taken in nighttime conditions, and thereby produce a photo-quality output images in the standard RGB (sRGB) space. Unlike the previous year's competition, the challenge images were collected with a mobile phone and the speed of algorithms was also measured alongside the quality of their output. To evaluate the results, a sufficient number of viewers were asked to assess the visual quality of the proposed solutions, considering the subjective nature of the task. There were 2 nominations: quality and efficiency. Top 5 solutions in terms of output quality were sorted by evaluation time (see Fig. 1). The top ranking participants' solutions effectively represent the state-of-the-art in nighttime photography rendering. More results can be found at https://nightimaging.org.
Abstract:The increasing demand for computational photography and imaging on mobile platforms has led to the widespread development and integration of advanced image sensors with novel algorithms in camera systems. However, the scarcity of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). Building on the achievements of the previous MIPI Workshops held at ECCV 2022 and CVPR 2023, we introduce our third MIPI challenge including three tracks focusing on novel image sensors and imaging algorithms. In this paper, we summarize and review the Nighttime Flare Removal track on MIPI 2024. In total, 170 participants were successfully registered, and 14 teams submitted results in the final testing phase. The developed solutions in this challenge achieved state-of-the-art performance on Nighttime Flare Removal. More details of this challenge and the link to the dataset can be found at https://mipi-challenge.org/MIPI2024/.
Abstract:Raw low light image enhancement (LLIE) has achieved much better performance than the sRGB domain enhancement methods due to the merits of raw data. However, the ambiguity between noisy to clean and raw to sRGB mappings may mislead the single-stage enhancement networks. The two-stage networks avoid ambiguity by decoupling the two mappings but usually have large computing complexity. To solve this problem, we propose a single-stage network empowered by Feature Domain Adaptation (FDA) to decouple the denoising and color mapping tasks in raw LLIE. The denoising encoder is supervised by the clean raw image, and then the denoised features are adapted for the color mapping task by an FDA module. We propose a Lineformer to serve as the FDA, which can well explore the global and local correlations with fewer line buffers (friendly to the line-based imaging process). During inference, the raw supervision branch is removed. In this way, our network combines the advantage of a two-stage enhancement process with the efficiency of single-stage inference. Experiments on four benchmark datasets demonstrate that our method achieves state-of-the-art performance with fewer computing costs (60% FLOPs of the two-stage method DNF). Our codes will be released after the acceptance of this work.