Abstract:In medical diagnostics, accurate uncertainty estimation for neural-based models is essential for complementing second-opinion systems. Despite neural network ensembles' proficiency in this problem, a gap persists between actual uncertainties and predicted estimates. A major difficulty here is the lack of labels on the hardness of examples: a typical dataset includes only ground truth target labels, making the uncertainty estimation problem almost unsupervised. Our novel approach narrows this gap by integrating expert assessments of case complexity into the neural network's learning process, utilizing both definitive target labels and supplementary complexity ratings. We validate our methodology for blood typing, leveraging a new dataset "BloodyWell" unique in augmenting labeled reaction images with complexity scores from six medical specialists. Experiments demonstrate enhancement of our approach in uncertainty prediction, achieving a 2.5-fold improvement with expert labels and a 35% increase in performance with estimates of neural-based expert consensus.
Abstract:This paper presents a review of the NTIRE 2024 challenge on night photography rendering. The goal of the challenge was to find solutions that process raw camera images taken in nighttime conditions, and thereby produce a photo-quality output images in the standard RGB (sRGB) space. Unlike the previous year's competition, the challenge images were collected with a mobile phone and the speed of algorithms was also measured alongside the quality of their output. To evaluate the results, a sufficient number of viewers were asked to assess the visual quality of the proposed solutions, considering the subjective nature of the task. There were 2 nominations: quality and efficiency. Top 5 solutions in terms of output quality were sorted by evaluation time (see Fig. 1). The top ranking participants' solutions effectively represent the state-of-the-art in nighttime photography rendering. More results can be found at https://nightimaging.org.