Abstract:High dynamic range (HDR) video reconstruction is attracting more and more attention due to the superior visual quality compared with those of low dynamic range (LDR) videos. The availability of LDR-HDR training pairs is essential for the HDR reconstruction quality. However, there are still no real LDR-HDR pairs for dynamic scenes due to the difficulty in capturing LDR-HDR frames simultaneously. In this work, we propose to utilize a staggered sensor to capture two alternate exposure images simultaneously, which are then fused into an HDR frame in both raw and sRGB domains. In this way, we build a large scale LDR-HDR video dataset with 85 scenes and each scene contains 60 frames. Based on this dataset, we further propose a Raw-HDRNet, which utilizes the raw LDR frames as inputs. We propose a pyramid flow-guided deformation convolution to align neighboring frames. Experimental results demonstrate that 1) the proposed dataset can improve the HDR reconstruction performance on real scenes for three benchmark networks; 2) Compared with sRGB inputs, utilizing raw inputs can further improve the reconstruction quality and our proposed Raw-HDRNet is a strong baseline for raw HDR reconstruction. Our dataset and code will be released after the acceptance of this paper.