Abstract:Federated Learning (FL) is designed to prevent data leakage through collaborative model training without centralized data storage. However, it remains vulnerable to gradient reconstruction attacks that recover original training data from shared gradients. To optimize the trade-off between data leakage and utility loss, we first derive a theoretical lower bound of reconstruction error (among all attackers) for the two standard methods: adding noise, and gradient pruning. We then customize these two defenses to be parameter- and model-specific and achieve the optimal trade-off between our obtained reconstruction lower bound and model utility. Experimental results validate that our methods outperform Gradient Noise and Gradient Pruning by protecting the training data better while also achieving better utility.
Abstract:Deep learning models often suffer from a lack of interpretability due to polysemanticity, where individual neurons are activated by multiple unrelated semantics, resulting in unclear attributions of model behavior. Recent advances in monosemanticity, where neurons correspond to consistent and distinct semantics, have significantly improved interpretability but are commonly believed to compromise accuracy. In this work, we challenge the prevailing belief of the accuracy-interpretability tradeoff, showing that monosemantic features not only enhance interpretability but also bring concrete gains in model performance. Across multiple robust learning scenarios-including input and label noise, few-shot learning, and out-of-domain generalization-our results show that models leveraging monosemantic features significantly outperform those relying on polysemantic features. Furthermore, we provide empirical and theoretical understandings on the robustness gains of feature monosemanticity. Our preliminary analysis suggests that monosemanticity, by promoting better separation of feature representations, leads to more robust decision boundaries. This diverse evidence highlights the generality of monosemanticity in improving model robustness. As a first step in this new direction, we embark on exploring the learning benefits of monosemanticity beyond interpretability, supporting the long-standing hypothesis of linking interpretability and robustness. Code is available at \url{https://github.com/PKU-ML/Beyond_Interpretability}.
Abstract:To remove redundant components of large language models (LLMs) without incurring significant computational costs, this work focuses on single-shot pruning without a retraining phase. We simplify the pruning process for Transformer-based LLMs by identifying a depth-2 pruning structure that functions independently. Additionally, we propose two inference-aware pruning criteria derived from the optimization perspective of output approximation, which outperforms traditional training-aware metrics such as gradient and Hessian. We also introduce a two-step reconstruction technique to mitigate pruning errors without model retraining. Experimental results demonstrate that our approach significantly reduces computational costs and hardware requirements while maintaining superior performance across various datasets and models.
Abstract:We revisit data selection in a modern context of finetuning from a fundamental perspective. Extending the classical wisdom of variance minimization in low dimensions to high-dimensional finetuning, our generalization analysis unveils the importance of additionally reducing bias induced by low-rank approximation. Inspired by the variance-bias tradeoff in high dimensions from the theory, we introduce Sketchy Moment Matching (SkMM), a scalable data selection scheme with two stages. (i) First, the bias is controlled using gradient sketching that explores the finetuning parameter space for an informative low-dimensional subspace $\mathcal{S}$; (ii) then the variance is reduced over $\mathcal{S}$ via moment matching between the original and selected datasets. Theoretically, we show that gradient sketching is fast and provably accurate: selecting $n$ samples by reducing variance over $\mathcal{S}$ preserves the fast-rate generalization $O(\dim(\mathcal{S})/n)$, independent of the parameter dimension. Empirically, we concretize the variance-bias balance via synthetic experiments and demonstrate the effectiveness of SkMM for finetuning in real vision tasks.
Abstract:Optimization of convex functions under stochastic zeroth-order feedback has been a major and challenging question in online learning. In this work, we consider the problem of optimizing second-order smooth and strongly convex functions where the algorithm is only accessible to noisy evaluations of the objective function it queries. We provide the first tight characterization for the rate of the minimax simple regret by developing matching upper and lower bounds. We propose an algorithm that features a combination of a bootstrapping stage and a mirror-descent stage. Our main technical innovation consists of a sharp characterization for the spherical-sampling gradient estimator under higher-order smoothness conditions, which allows the algorithm to optimally balance the bias-variance tradeoff, and a new iterative method for the bootstrapping stage, which maintains the performance for unbounded Hessian.
Abstract:Multi-source domain adaptation aims to reduce performance degradation when applying machine learning models to unseen domains. A fundamental challenge is devising the optimal strategy for feature selection. Existing literature is somewhat paradoxical: some advocate for learning invariant features from source domains, while others favor more diverse features. To address the challenge, we propose a statistical framework that distinguishes the utilities of features based on the variance of their correlation to label $y$ across domains. Under our framework, we design and analyze a learning procedure consisting of learning approximately shared feature representation from source tasks and fine-tuning it on the target task. Our theoretical analysis necessitates the importance of learning approximately shared features instead of only the strictly invariant features and yields an improved population risk compared to previous results on both source and target tasks, thus partly resolving the paradox mentioned above. Inspired by our theory, we proposed a more practical way to isolate the content (invariant+approximately shared) from environmental features and further consolidate our theoretical findings.
Abstract:Models trained on data composed of different groups or domains can suffer from severe performance degradation under distribution shifts. While recent methods have largely focused on optimizing the worst-group objective, this often comes at the expense of good performance on other groups. To address this problem, we introduce an optimization scheme to achieve good performance across groups and find a good solution for all without severely sacrificing performance on any of them. However, directly applying such optimization involves updating the parameters of the entire network, making it both computationally expensive and challenging. Thus, we introduce Controllable Prompt Tuning (CPT), which couples our approach with prompt-tuning techniques. On spurious correlation benchmarks, our procedures achieve state-of-the-art results across both transformer and non-transformer architectures, as well as unimodal and multimodal data, while requiring only 0.4% tunable parameters.
Abstract:Reconstruction attacks and defenses are essential in understanding the data leakage problem in machine learning. However, prior work has centered around empirical observations of gradient inversion attacks, lacks theoretical groundings, and was unable to disentangle the usefulness of defending methods versus the computational limitation of attacking methods. In this work, we propose a strong reconstruction attack in the setting of federated learning. The attack reconstructs intermediate features and nicely integrates with and outperforms most of the previous methods. On this stronger attack, we thoroughly investigate both theoretically and empirically the effect of the most common defense methods. Our findings suggest that among various defense mechanisms, such as gradient clipping, dropout, additive noise, local aggregation, etc., gradient pruning emerges as the most effective strategy to defend against state-of-the-art attacks.
Abstract:Previous theoretical results pertaining to meta-learning on sequences build on contrived assumptions and are somewhat convoluted. We introduce new information-theoretic tools that lead to an elegant and very general decomposition of error into three components: irreducible error, meta-learning error, and intra-task error. These tools unify analyses across many meta-learning challenges. To illustrate, we apply them to establish new results about in-context learning with transformers. Our theoretical results characterizes how error decays in both the number of training sequences and sequence lengths. Our results are very general; for example, they avoid contrived mixing time assumptions made by all prior results that establish decay of error with sequence length.
Abstract:Federated learning (FL) emphasizes decentralized training by storing data locally and sending only model updates, underlining user privacy. Recently, a line of works on privacy attacks impairs user privacy by extracting sensitive training text from language models in the context of FL. Yet, these attack techniques face distinct hurdles: some work chiefly with limited batch sizes (e.g., batch size of 1), and others are easily detectable. This paper introduces an innovative approach that is challenging to detect, significantly enhancing the recovery rate of text in various batch-size settings. Building on fundamental gradient matching and domain prior knowledge, we enhance the attack by recovering the input of the Pooler layer of language models, which enables us to provide additional supervised signals at the feature level. Unlike gradient data, these signals do not average across sentences and tokens, thereby offering more nuanced and effective insights. We benchmark our method using text classification tasks on datasets such as CoLA, SST-2, and Rotten Tomatoes. Across different batch sizes and models, our approach consistently outperforms previous state-of-the-art results.