Abstract:For prohibitively large-scale Travelling Salesman Problems (TSPs), existing algorithms face big challenges in terms of both computational efficiency and solution quality. To address this issue, we propose a hierarchical destroy-and-repair (HDR) approach, which attempts to improve an initial solution by applying a series of carefully designed destroy-and-repair operations. A key innovative concept is the hierarchical search framework, which recursively fixes partial edges and compresses the input instance into a small-scale TSP under some equivalence guarantee. This neat search framework is able to deliver highly competitive solutions within a reasonable time. Fair comparisons based on nineteen famous large-scale instances (with 10,000 to 10,000,000 cities) show that HDR is highly competitive against existing state-of-the-art TSP algorithms, in terms of both efficiency and solution quality. Notably, on two large instances with 3,162,278 and 10,000,000 cities, HDR breaks the world records (i.e., best-known results regardless of computation time), which were previously achieved by LKH and its variants, while HDR is completely independent of LKH. Finally, ablation studies are performed to certify the importance and validity of the hierarchical search framework.
Abstract:We study the problem of identifying the best arm in a stochastic multi-armed bandit game. Given a set of $n$ arms indexed from $1$ to $n$, each arm $i$ is associated with an unknown reward distribution supported on $[0,1]$ with mean $\theta_i$ and variance $\sigma_i^2$. Assume $\theta_1 > \theta_2 \geq \cdots \geq\theta_n$. We propose an adaptive algorithm which explores the gaps and variances of the rewards of the arms and makes future decisions based on the gathered information using a novel approach called \textit{grouped median elimination}. The proposed algorithm guarantees to output the best arm with probability $(1-\delta)$ and uses at most $O \left(\sum_{i = 1}^n \left(\frac{\sigma_i^2}{\Delta_i^2} + \frac{1}{\Delta_i}\right)(\ln \delta^{-1} + \ln \ln \Delta_i^{-1})\right)$ samples, where $\Delta_i$ ($i \geq 2$) denotes the reward gap between arm $i$ and the best arm and we define $\Delta_1 = \Delta_2$. This achieves a significant advantage over the variance-independent algorithms in some favorable scenarios and is the first result that removes the extra $\ln n$ factor on the best arm compared with the state-of-the-art. We further show that $\Omega \left( \sum_{i = 1}^n \left( \frac{\sigma_i^2}{\Delta_i^2} + \frac{1}{\Delta_i} \right) \ln \delta^{-1} \right)$ samples are necessary for an algorithm to achieve the same goal, thereby illustrating that our algorithm is optimal up to doubly logarithmic terms.
Abstract:In this paper, we study the stochastic combinatorial multi-armed bandit (CMAB) framework that allows a general nonlinear reward function, whose expected value may not depend only on the means of the input random variables but possibly on the entire distributions of these variables. Our framework enables a much larger class of reward functions such as the $\max()$ function and nonlinear utility functions. Existing techniques relying on accurate estimations of the means of random variables, such as the upper confidence bound (UCB) technique, do not work directly on these functions. We propose a new algorithm called stochastically dominant confidence bound (SDCB), which estimates the distributions of underlying random variables and their stochastically dominant confidence bounds. We prove that SDCB can achieve $O(\log{T})$ distribution-dependent regret and $\tilde{O}(\sqrt{T})$ distribution-independent regret, where $T$ is the time horizon. We apply our results to the $K$-MAX problem and expected utility maximization problems. In particular, for $K$-MAX, we provide the first polynomial-time approximation scheme (PTAS) for its offline problem, and give the first $\tilde{O}(\sqrt T)$ bound on the $(1-\epsilon)$-approximation regret of its online problem, for any $\epsilon>0$.