Abstract:Deep learning models are crucial for autonomous vehicle perception, but their reliability is challenged by algorithmic limitations and hardware faults. We address the latter by examining fault-tolerance in semantic segmentation models. Using established hardware fault models, we evaluate existing hardening techniques both in terms of accuracy and uncertainty and introduce ReLUMax, a novel simple activation function designed to enhance resilience against transient faults. ReLUMax integrates seamlessly into existing architectures without time overhead. Our experiments demonstrate that ReLUMax effectively improves robustness, preserving performance and boosting prediction confidence, thus contributing to the development of reliable autonomous driving systems.
Abstract:Recent advancements in image segmentation have focused on enhancing the efficiency of the models to meet the demands of real-time applications, especially on edge devices. However, existing research has primarily concentrated on single-task settings, especially on semantic segmentation, leading to redundant efforts and specialized architectures for different tasks. To address this limitation, we propose a novel architecture for efficient multi-task image segmentation, capable of handling various segmentation tasks without sacrificing efficiency or accuracy. We introduce BiSeNetFormer, that leverages the efficiency of two-stream semantic segmentation architectures and it extends them into a mask classification framework. Our approach maintains the efficient spatial and context paths to capture detailed and semantic information, respectively, while leveraging an efficient transformed-based segmentation head that computes the binary masks and class probabilities. By seamlessly supporting multiple tasks, namely semantic and panoptic segmentation, BiSeNetFormer offers a versatile solution for multi-task segmentation. We evaluate our approach on popular datasets, Cityscapes and ADE20K, demonstrating impressive inference speeds while maintaining competitive accuracy compared to state-of-the-art architectures. Our results indicate that BiSeNetFormer represents a significant advancement towards fast, efficient, and multi-task segmentation networks, bridging the gap between model efficiency and task adaptability.
Abstract:Recent transformer-based architectures have shown impressive results in the field of image segmentation. Thanks to their flexibility, they obtain outstanding performance in multiple segmentation tasks, such as semantic and panoptic, under a single unified framework. To achieve such impressive performance, these architectures employ intensive operations and require substantial computational resources, which are often not available, especially on edge devices. To fill this gap, we propose Prototype-based Efficient MaskFormer (PEM), an efficient transformer-based architecture that can operate in multiple segmentation tasks. PEM proposes a novel prototype-based cross-attention which leverages the redundancy of visual features to restrict the computation and improve the efficiency without harming the performance. In addition, PEM introduces an efficient multi-scale feature pyramid network, capable of extracting features that have high semantic content in an efficient way, thanks to the combination of deformable convolutions and context-based self-modulation. We benchmark the proposed PEM architecture on two tasks, semantic and panoptic segmentation, evaluated on two different datasets, Cityscapes and ADE20K. PEM demonstrates outstanding performance on every task and dataset, outperforming task-specific architectures while being comparable and even better than computationally-expensive baselines.
Abstract:Neural Networks design is a complex and often daunting task, particularly for resource-constrained scenarios typical of mobile-sized models. Neural Architecture Search is a promising approach to automate this process, but existing competitive methods require large training time and computational resources to generate accurate models. To overcome these limits, this paper contributes with: i) a novel training-free metric, named Entropic Score, to estimate model expressivity through the aggregated element-wise entropy of its activations; ii) a cyclic search algorithm to separately yet synergistically search model size and topology. Entropic Score shows remarkable ability in searching for the topology of the network, and a proper combination with LogSynflow, to search for model size, yields superior capability to completely design high-performance Hybrid Transformers for edge applications in less than 1 GPU hour, resulting in the fastest and most accurate NAS method for ImageNet classification.
Abstract:Deep Neural Networks (DNNs) enable a wide series of technological advancements, ranging from clinical imaging, to predictive industrial maintenance and autonomous driving. However, recent findings indicate that transient hardware faults may corrupt the models prediction dramatically. For instance, the radiation-induced misprediction probability can be so high to impede a safe deployment of DNNs models at scale, urging the need for efficient and effective hardening solutions. In this work, we propose to tackle the reliability issue both at training and model design time. First, we show that vanilla models are highly affected by transient faults, that can induce a performances drop up to 37%. Hence, we provide three zero-overhead solutions, based on DNN re-design and re-train, that can improve DNNs reliability to transient faults up to one order of magnitude. We complement our work with extensive ablation studies to quantify the gain in performances of each hardening component.