Abstract:Social media abounds with multimodal sarcasm, and identifying sarcasm targets is particularly challenging due to the implicit incongruity not directly evident in the text and image modalities. Current methods for Multimodal Sarcasm Target Identification (MSTI) predominantly focus on superficial indicators in an end-to-end manner, overlooking the nuanced understanding of multimodal sarcasm conveyed through both the text and image. This paper proposes a versatile MSTI framework with a coarse-to-fine paradigm, by augmenting sarcasm explainability with reasoning and pre-training knowledge. Inspired by the powerful capacity of Large Multimodal Models (LMMs) on multimodal reasoning, we first engage LMMs to generate competing rationales for coarser-grained pre-training of a small language model on multimodal sarcasm detection. We then propose fine-tuning the model for finer-grained sarcasm target identification. Our framework is thus empowered to adeptly unveil the intricate targets within multimodal sarcasm and mitigate the negative impact posed by potential noise inherently in LMMs. Experimental results demonstrate that our model far outperforms state-of-the-art MSTI methods, and markedly exhibits explainability in deciphering sarcasm as well.
Abstract:Autonomous Driving System (ADS) testing is crucial in ADS development, with the current primary focus being on safety. However, the evaluation of non-safety-critical performance, particularly the ADS's ability to make optimal decisions and produce optimal paths for autonomous vehicles (AVs), is equally vital to ensure the intelligence and reduce risks of AVs. Currently, there is little work dedicated to assessing ADSs' optimal decision-making performance due to the lack of corresponding oracles and the difficulty in generating scenarios with non-optimal decisions. In this paper, we focus on evaluating the decision-making quality of an ADS and propose the first method for detecting non-optimal decision scenarios (NoDSs), where the ADS does not compute optimal paths for AVs. Firstly, to deal with the oracle problem, we propose a novel metamorphic relation (MR) aimed at exposing violations of optimal decisions. The MR identifies the property that the ADS should retain optimal decisions when the optimal path remains unaffected by non-invasive changes. Subsequently, we develop a new framework, Decictor, designed to generate NoDSs efficiently. Decictor comprises three main components: Non-invasive Mutation, MR Check, and Feedback. The Non-invasive Mutation ensures that the original optimal path in the mutated scenarios is not affected, while the MR Check is responsible for determining whether non-optimal decisions are made. To enhance the effectiveness of identifying NoDSs, we design a feedback metric that combines both spatial and temporal aspects of the AV's movement. We evaluate Decictor on Baidu Apollo, an open-source and production-grade ADS. The experimental results validate the effectiveness of Decictor in detecting non-optimal decisions of ADSs. Our work provides valuable and original insights into evaluating the non-safety-critical performance of ADSs.
Abstract:The truth is significantly hampered by massive rumors that spread along with breaking news or popular topics. Since there is sufficient corpus gathered from the same domain for model training, existing rumor detection algorithms show promising performance on yesterday's news. However, due to a lack of substantial training data and prior expert knowledge, they are poor at spotting rumors concerning unforeseen events, especially those propagated in different languages (i.e., low-resource regimes). In this paper, we propose a unified contrastive transfer framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced with only few-shot annotations. More specifically, we first represent rumor circulated on social media as an undirected topology for enhancing the interaction of user opinions, and then train a Multi-scale Graph Convolutional Network via a unified contrastive paradigm to mine effective clues simultaneously from post semantics and propagation structure. Our model explicitly breaks the barriers of the domain and/or language issues, via language alignment and a novel domain-adaptive contrastive learning mechanism. To well-generalize the representation learning using a small set of annotated target events, we reveal that rumor-indicative signal is closely correlated with the uniformity of the distribution of these events. We design a target-wise contrastive training mechanism with three event-level data augmentation strategies, capable of unifying the representations by distinguishing target events. Extensive experiments conducted on four low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
Abstract:Few-shot segmentation (FSS) aims to segment objects of unseen classes given only a few annotated support images. Most existing methods simply stitch query features with independent support prototypes and segment the query image by feeding the mixed features to a decoder. Although significant improvements have been achieved, existing methods are still face class biases due to class variants and background confusion. In this paper, we propose a joint framework that combines more valuable class-aware and class-agnostic alignment guidance to facilitate the segmentation. Specifically, we design a hybrid alignment module which establishes multi-scale query-support correspondences to mine the most relevant class-aware information for each query image from the corresponding support features. In addition, we explore utilizing base-classes knowledge to generate class-agnostic prior mask which makes a distinction between real background and foreground by highlighting all object regions, especially those of unseen classes. By jointly aggregating class-aware and class-agnostic alignment guidance, better segmentation performances are obtained on query images. Extensive experiments on PASCAL-$5^i$ and COCO-$20^i$ datasets demonstrate that our proposed joint framework performs better, especially on the 1-shot setting.
Abstract:Massive false rumors emerging along with breaking news or trending topics severely hinder the truth. Existing rumor detection approaches achieve promising performance on the yesterday's news, since there is enough corpus collected from the same domain for model training. However, they are poor at detecting rumors about unforeseen events especially those propagated in different languages due to the lack of training data and prior knowledge (i.e., low-resource regimes). In this paper, we propose an adversarial contrastive learning framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. Our model explicitly overcomes the restriction of domain and/or language usage via language alignment and a novel supervised contrastive training paradigm. Moreover, we develop an adversarial augmentation mechanism to further enhance the robustness of low-resource rumor representation. Extensive experiments conducted on two low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
Abstract:Rumors are rampant in the era of social media. Conversation structures provide valuable clues to differentiate between real and fake claims. However, existing rumor detection methods are either limited to the strict relation of user responses or oversimplify the conversation structure. In this study, to substantially reinforces the interaction of user opinions while alleviating the negative impact imposed by irrelevant posts, we first represent the conversation thread as an undirected interaction graph. We then present a Claim-guided Hierarchical Graph Attention Network for rumor classification, which enhances the representation learning for responsive posts considering the entire social contexts and attends over the posts that can semantically infer the target claim. Extensive experiments on three Twitter datasets demonstrate that our rumor detection method achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.
Abstract:Deep learning approaches to cyclone intensity estimationhave recently shown promising results. However, sufferingfrom the extreme scarcity of cyclone data on specific in-tensity, most existing deep learning methods fail to achievesatisfactory performance on cyclone intensity estimation,especially on classes with few instances. To avoid the degra-dation of recognition performance caused by scarce samples,we propose a context-aware CycleGAN which learns the la-tent evolution features from adjacent cyclone intensity andsynthesizes CNN features of classes lacking samples fromunpaired source classes. Specifically, our approach synthe-sizes features conditioned on the learned evolution features,while the extra information is not required. Experimentalresults of several evaluation methods show the effectivenessof our approach, even can predicting unseen classes.