Abstract:Existing communication hardware is being exerted to its limits to accommodate for the ever increasing internet usage globally. This leads to non-linear distortion in the communication link that requires non-linear equalization techniques to operate the link at a reasonable bit error rate. This paper addresses the challenge of blind non-linear equalization using a variational autoencoder (VAE) with a second-order Volterra channel model. The VAE framework's costfunction, the evidence lower bound (ELBO), is derived for real-valued constellations and can be evaluated analytically without resorting to sampling techniques. We demonstrate the effectiveness of our approach through simulations on a synthetic Wiener-Hammerstein channel and a simulated intensity modulated direct detection (IM/DD) optical link. The results show significant improvements in equalization performance, compared to a VAE with linear channel assumptions, highlighting the importance of appropriate channel modeling in unsupervised VAE equalizer frameworks.
Abstract:This paper investigates the application of end-to-end (E2E) learning for joint optimization of pulse-shaper and receiver filter to reduce intersymbol interference (ISI) in bandwidth-limited communication systems. We investigate this in two numerical simulation models: 1) an additive white Gaussian noise (AWGN) channel with bandwidth limitation and 2) an intensity modulated direct detection (IM/DD) link employing an electro-absorption modulator. For both simulation models, we implement a wavelength division multiplexing (WDM) scheme to ensure that the learned filters adhere to the bandwidth constraints of the WDM channels. Our findings reveal that E2E learning greatly surpasses traditional single-sided transmitter pulse-shaper or receiver filter optimization methods, achieving significant performance gains in terms of symbol error rate with shorter filter lengths. These results suggest that E2E learning can decrease the complexity and enhance the performance of future high-speed optical communication systems.
Abstract:Time series data is fundamentally important for describing many critical domains such as healthcare, finance, and climate, where explainable models are necessary for safe automated decision-making. To develop eXplainable AI (XAI) in these domains therefore implies explaining salient information in the time series. Current methods for obtaining saliency maps assumes localized information in the raw input space. In this paper, we argue that the salient information of a number of time series is more likely to be localized in the frequency domain. We propose FreqRISE, which uses masking based methods to produce explanations in the frequency and time-frequency domain, which shows the best performance across a number of tasks.
Abstract:We numerically demonstrate that joint optimization of FIR based pulse-shaper and receiver filter results in an improved system performance, and shorter filter lengths (lower complexity), for 4-PAM 100 GBd IM/DD systems.
Abstract:In machine learning energy potentials for atomic systems, forces are commonly obtained as the negative derivative of the energy function with respect to atomic positions. To quantify aleatoric uncertainty in the predicted energies, a widely used modeling approach involves predicting both a mean and variance for each energy value. However, this model is not differentiable under the usual white noise assumption, so energy uncertainty does not naturally translate to force uncertainty. In this work we propose a machine learning potential energy model in which energy and force aleatoric uncertainty are linked through a spatially correlated noise process. We demonstrate our approach on an equivariant messages passing neural network potential trained on energies and forces on two out-of-equilibrium molecular datasets. Furthermore, we also show how to obtain epistemic uncertainties in this setting based on a Bayesian interpretation of deep ensemble models.
Abstract:Labeling of multivariate biomedical time series data is a laborious and expensive process. Self-supervised contrastive learning alleviates the need for large, labeled datasets through pretraining on unlabeled data. However, for multivariate time series data, the set of input channels often varies between applications, and most existing work does not allow for transfer between datasets with different sets of input channels. We propose learning one encoder to operate on all input channels individually. We then use a message passing neural network to extract a single representation across channels. We demonstrate the potential of this method by pretraining our model on a dataset with six EEG channels and then fine-tuning it on a dataset with two different EEG channels. We compare models with and without the message passing neural network across different contrastive loss functions. We show that our method, combined with the TS2Vec loss, outperforms all other methods in most settings.
Abstract:In federated learning, data heterogeneity is a critical challenge. A straightforward solution is to shuffle the clients' data to homogenize the distribution. However, this may violate data access rights, and how and when shuffling can accelerate the convergence of a federated optimization algorithm is not theoretically well understood. In this paper, we establish a precise and quantifiable correspondence between data heterogeneity and parameters in the convergence rate when a fraction of data is shuffled across clients. We prove that shuffling can quadratically reduce the gradient dissimilarity with respect to the shuffling percentage, accelerating convergence. Inspired by the theory, we propose a practical approach that addresses the data access rights issue by shuffling locally generated synthetic data. The experimental results show that shuffling synthetic data improves the performance of multiple existing federated learning algorithms by a large margin.
Abstract:Inexpensive machine learning potentials are increasingly being used to speed up structural optimization and molecular dynamics simulations of materials by iteratively predicting and applying interatomic forces. In these settings, it is crucial to detect when predictions are unreliable to avoid wrong or misleading results. Here, we present a complete framework for training and recalibrating graph neural network ensemble models to produce accurate predictions of energy and forces with calibrated uncertainty estimates. The proposed method considers both epistemic and aleatoric uncertainty and the total uncertainties are recalibrated post hoc using a nonlinear scaling function to achieve good calibration on previously unseen data, without loss of predictive accuracy. The method is demonstrated and evaluated on two challenging, publicly available datasets, ANI-1x (Smith et al.) and Transition1x (Schreiner et al.), both containing diverse conformations far from equilibrium. A detailed analysis of the predictive performance and uncertainty calibration is provided. In all experiments, the proposed method achieved low prediction error and good uncertainty calibration, with predicted uncertainty correlating with expected error, on energy and forces. To the best of our knowledge, the method presented in this paper is the first to consider a complete framework for obtaining calibrated epistemic and aleatoric uncertainty predictions on both energy and forces in ML potentials.
Abstract:Data heterogeneity across clients is a key challenge in federated learning. Prior works address this by either aligning client and server models or using control variates to correct client model drift. Although these methods achieve fast convergence in convex or simple non-convex problems, the performance in over-parameterized models such as deep neural networks is lacking. In this paper, we first revisit the widely used FedAvg algorithm in a deep neural network to understand how data heterogeneity influences the gradient updates across the neural network layers. We observe that while the feature extraction layers are learned efficiently by FedAvg, the substantial diversity of the final classification layers across clients impedes the performance. Motivated by this, we propose to correct model drift by variance reduction only on the final layers. We demonstrate that this significantly outperforms existing benchmarks at a similar or lower communication cost. We furthermore provide proof for the convergence rate of our algorithm.
Abstract:Raman spectroscopy is an effective, low-cost, non-intrusive technique often used for chemical identification. Typical approaches are based on matching observations to a reference database, which requires careful preprocessing, or supervised machine learning, which requires a fairly large number of training observations from each class. We propose a new machine learning technique for Raman spectrum matching, based on contrastive representation learning, that requires no preprocessing and works with as little as a single reference spectrum from each class. On three datasets we demonstrate that our approach significantly improves or is on par with the state of the art in prediction accuracy, and we show how to compute conformal prediction sets with specified frequentist coverage. Based on our findings, we believe contrastive representation learning is a promising alternative to existing methods for Raman spectrum matching.