Abstract:Existing communication hardware is being exerted to its limits to accommodate for the ever increasing internet usage globally. This leads to non-linear distortion in the communication link that requires non-linear equalization techniques to operate the link at a reasonable bit error rate. This paper addresses the challenge of blind non-linear equalization using a variational autoencoder (VAE) with a second-order Volterra channel model. The VAE framework's costfunction, the evidence lower bound (ELBO), is derived for real-valued constellations and can be evaluated analytically without resorting to sampling techniques. We demonstrate the effectiveness of our approach through simulations on a synthetic Wiener-Hammerstein channel and a simulated intensity modulated direct detection (IM/DD) optical link. The results show significant improvements in equalization performance, compared to a VAE with linear channel assumptions, highlighting the importance of appropriate channel modeling in unsupervised VAE equalizer frameworks.
Abstract:This paper investigates the application of end-to-end (E2E) learning for joint optimization of pulse-shaper and receiver filter to reduce intersymbol interference (ISI) in bandwidth-limited communication systems. We investigate this in two numerical simulation models: 1) an additive white Gaussian noise (AWGN) channel with bandwidth limitation and 2) an intensity modulated direct detection (IM/DD) link employing an electro-absorption modulator. For both simulation models, we implement a wavelength division multiplexing (WDM) scheme to ensure that the learned filters adhere to the bandwidth constraints of the WDM channels. Our findings reveal that E2E learning greatly surpasses traditional single-sided transmitter pulse-shaper or receiver filter optimization methods, achieving significant performance gains in terms of symbol error rate with shorter filter lengths. These results suggest that E2E learning can decrease the complexity and enhance the performance of future high-speed optical communication systems.
Abstract:We numerically demonstrate that joint optimization of FIR based pulse-shaper and receiver filter results in an improved system performance, and shorter filter lengths (lower complexity), for 4-PAM 100 GBd IM/DD systems.