Abstract:In order to build artificial intelligence systems that can perceive and reason with human behavior in the real world, we must first design models that conduct complex spatio-temporal reasoning over motion sequences. Moving towards this goal, we propose the HumanMotionQA task to evaluate complex, multi-step reasoning abilities of models on long-form human motion sequences. We generate a dataset of question-answer pairs that require detecting motor cues in small portions of motion sequences, reasoning temporally about when events occur, and querying specific motion attributes. In addition, we propose NSPose, a neuro-symbolic method for this task that uses symbolic reasoning and a modular design to ground motion through learning motion concepts, attribute neural operators, and temporal relations. We demonstrate the suitability of NSPose for the HumanMotionQA task, outperforming all baseline methods.
Abstract:Parkinson's disease (PD) is a neurological disorder that has a variety of observable motor-related symptoms such as slow movement, tremor, muscular rigidity, and impaired posture. PD is typically diagnosed by evaluating the severity of motor impairments according to scoring systems such as the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Automated severity prediction using video recordings of individuals provides a promising route for non-intrusive monitoring of motor impairments. However, the limited size of PD gait data hinders model ability and clinical potential. Because of this clinical data scarcity and inspired by the recent advances in self-supervised large-scale language models like GPT-3, we use human motion forecasting as an effective self-supervised pre-training task for the estimation of motor impairment severity. We introduce GaitForeMer, Gait Forecasting and impairment estimation transforMer, which is first pre-trained on public datasets to forecast gait movements and then applied to clinical data to predict MDS-UPDRS gait impairment severity. Our method outperforms previous approaches that rely solely on clinical data by a large margin, achieving an F1 score of 0.76, precision of 0.79, and recall of 0.75. Using GaitForeMer, we show how public human movement data repositories can assist clinical use cases through learning universal motion representations. The code is available at https://github.com/markendo/GaitForeMer .
Abstract:Medical image segmentation models are typically supervised by expert annotations at the pixel-level, which can be expensive to acquire. In this work, we propose a method that combines the high quality of pixel-level expert annotations with the scale of coarse DNN-generated saliency maps for training multi-label semantic segmentation models. We demonstrate the application of our semi-supervised method, which we call CheXseg, on multi-label chest x-ray interpretation. We find that CheXseg improves upon the performance (mIoU) of fully-supervised methods that use only pixel-level expert annotations by 13.4% and weakly-supervised methods that use only DNN-generated saliency maps by 91.2%. Furthermore, we implement a semi-supervised method using knowledge distillation and find that though it is outperformed by CheXseg, it exceeds the performance (mIoU) of the best fully-supervised method by 4.83%. Our best method is able to match radiologist agreement on three out of ten pathologies and reduces the overall performance gap by 71.6% as compared to weakly-supervised methods.