Abstract:Large language models (LLMs) acquire beliefs about gender from training data and can therefore generate text with stereotypical gender attitudes. Prior studies have demonstrated model generations favor one gender or exhibit stereotypes about gender, but have not investigated the complex dynamics that can influence model reasoning and decision-making involving gender. We study gender equity within LLMs through a decision-making lens with a new dataset, DeMET Prompts, containing scenarios related to intimate, romantic relationships. We explore nine relationship configurations through name pairs across three name lists (men, women, neutral). We investigate equity in the context of gender roles through numerous lenses: typical and gender-neutral names, with and without model safety enhancements, same and mixed-gender relationships, and egalitarian versus traditional scenarios across various topics. While all models exhibit the same biases (women favored, then those with gender-neutral names, and lastly men), safety guardrails reduce bias. In addition, models tend to circumvent traditional male dominance stereotypes and side with 'traditionally female' individuals more often, suggesting relationships are viewed as a female domain by the models.
Abstract:Despite the widespread adoption of multi-task training in deep learning, little is understood about how multi-task learning (MTL) affects generalization. Prior work has conjectured that the negative effects of MTL are due to optimization challenges that arise during training, and many optimization methods have been proposed to improve multi-task performance. However, recent work has shown that these methods fail to consistently improve multi-task generalization. In this work, we seek to improve our understanding of these failures by empirically studying how MTL impacts the optimization of tasks, and whether this impact can explain the effects of MTL on generalization. We show that MTL results in a generalization gap-a gap in generalization at comparable training loss-between single-task and multi-task trajectories early into training. However, we find that factors of the optimization trajectory previously proposed to explain generalization gaps in single-task settings cannot explain the generalization gaps between single-task and multi-task models. Moreover, we show that the amount of gradient conflict between tasks is correlated with negative effects to task optimization, but is not predictive of generalization. Our work sheds light on the underlying causes for failures in MTL and, importantly, raises questions about the role of general purpose multi-task optimization algorithms.
Abstract:The development of large language models leads to the formation of a pre-train-then-align paradigm, in which the model is typically pre-trained on a large text corpus and undergoes a tuning stage to align the model with human preference or downstream tasks. In this work, we investigate the relationship between pre-training and fine-tuning by fine-tuning multiple intermediate pre-trained model checkpoints. Our results on 18 datasets suggest that i) continual pre-training improves the model in a latent way that unveils after fine-tuning; ii) with extra fine-tuning, the datasets that the model does not demonstrate capability gain much more than those that the model performs well during the pre-training stage; iii) although model benefits significantly through supervised fine-tuning, it may forget previously known domain knowledge and the tasks that are not seen during fine-tuning; iv) the model resembles high sensitivity to evaluation prompts after supervised fine-tuning, but this sensitivity can be alleviated by more pre-training.
Abstract:As generated text becomes more commonplace, it is increasingly important to evaluate how well-supported such text is by external knowledge sources. Many approaches for evaluating textual support rely on some method for decomposing text into its individual subclaims which are scored against a trusted reference. We investigate how various methods of claim decomposition -- especially LLM-based methods -- affect the result of an evaluation approach such as the recently proposed FActScore, finding that it is sensitive to the decomposition method used. This sensitivity arises because such metrics attribute overall textual support to the model that generated the text even though error can also come from the metric's decomposition step. To measure decomposition quality, we introduce an adaptation of FActScore, which we call DecompScore. We then propose an LLM-based approach to generating decompositions inspired by Bertrand Russell's theory of logical atomism and neo-Davidsonian semantics and demonstrate its improved decomposition quality over previous methods.
Abstract:LLMs have demonstrated impressive performance in answering medical questions, such as passing scores on medical licensing examinations. However, medical board exam questions or general clinical questions do not capture the complexity of realistic clinical cases. Moreover, the lack of reference explanations means we cannot easily evaluate the reasoning of model decisions, a crucial component of supporting doctors in making complex medical decisions. To address these challenges, we construct two new datasets: JAMA Clinical Challenge and Medbullets. JAMA Clinical Challenge consists of questions based on challenging clinical cases, while Medbullets comprises USMLE Step 2&3 style clinical questions. Both datasets are structured as multiple-choice question-answering tasks, where each question is accompanied by an expert-written explanation. We evaluate four LLMs on the two datasets using various prompts. Experiments demonstrate that our datasets are harder than previous benchmarks. The inconsistency between automatic and human evaluations of model-generated explanations highlights the need to develop new metrics to support future research on explainable medical QA.
Abstract:Chat-based large language models have the opportunity to empower individuals lacking high-quality healthcare access to receive personalized information across a variety of topics. However, users may ask underspecified questions that require additional context for a model to correctly answer. We study how large language model biases are exhibited through these contextual questions in the healthcare domain. To accomplish this, we curate a dataset of sexual and reproductive healthcare questions that are dependent on age, sex, and location attributes. We compare models' outputs with and without demographic context to determine group alignment among our contextual questions. Our experiments reveal biases in each of these attributes, where young adult female users are favored.
Abstract:Diabetic eye disease is a major cause of blindness worldwide. The ability to monitor relevant clinical trajectories and detect lapses in care is critical to managing the disease and preventing blindness. Alas, much of the information necessary to support these goals is found only in the free text of the electronic medical record. To fill this information gap, we introduce a system for extracting evidence from clinical text of 19 clinical concepts related to diabetic eye disease and inferring relevant attributes for each. In developing this ophthalmology phenotyping system, we are also afforded a unique opportunity to evaluate the effectiveness of clinical language models at adapting to new clinical domains. Across multiple training paradigms, we find that BERT language models pretrained on out-of-distribution clinical data offer no significant improvement over BERT language models pretrained on non-clinical data for our domain. Our study tempers recent claims that language models pretrained on clinical data are necessary for clinical NLP tasks and highlights the importance of not treating clinical language data as a single homogeneous domain.
Abstract:Recently, work in NLP has shifted to few-shot (in-context) learning, with large language models (LLMs) performing well across a range of tasks. However, while fairness evaluations have become a standard for supervised methods, little is known about the fairness of LLMs as prediction systems. Further, common standard methods for fairness involve access to models weights or are applied during finetuning, which are not applicable in few-shot learning. Do LLMs exhibit prediction biases when used for standard NLP tasks? In this work, we explore the effect of shots, which directly affect the performance of models, on the fairness of LLMs as NLP classification systems. We consider how different shot selection strategies, both existing and new demographically sensitive methods, affect model fairness across three standard fairness datasets. We discuss how future work can include LLM fairness evaluations.
Abstract:Autoregressive language models are trained by minimizing the cross-entropy of the model distribution Q relative to the data distribution P -- that is, minimizing the forward cross-entropy, which is equivalent to maximum likelihood estimation (MLE). We have observed that models trained in this way may "over-generalize", in the sense that they produce non-human-like text. Moreover, we believe that reverse cross-entropy, i.e., the cross-entropy of P relative to Q, is a better reflection of how a human would evaluate text generated by a model. Hence, we propose learning with MixCE, an objective that mixes the forward and reverse cross-entropies. We evaluate models trained with this objective on synthetic data settings (where P is known) and real data, and show that the resulting models yield better generated text without complex decoding strategies. Our code and models are publicly available at https://github.com/bloomberg/mixce-acl2023
Abstract:To ensure the fairness of machine learning systems, we can include a fairness loss during training based on demographic information associated with the training data. However, we cannot train debiased classifiers for most tasks since the relevant datasets lack demographic annotations. Can we utilize demographic data for a related task to improve the fairness of our target task? We demonstrate that demographic fairness objectives transfer to new tasks trained within a multi-task framework. We adapt a single-task fairness loss to a multi-task setting to exploit demographic labels from a related task in debiasing a target task. We explore different settings with missing demographic data and show how our loss can improve fairness even without in-task demographics, across various domains and tasks.