Abstract:Malaysian English is a low resource creole language, where it carries the elements of Malay, Chinese, and Tamil languages, in addition to Standard English. Named Entity Recognition (NER) models underperform when capturing entities from Malaysian English text due to its distinctive morphosyntactic adaptations, semantic features and code-switching (mixing English and Malay). Considering these gaps, we introduce MENmBERT and MENBERT, a pre-trained language model with contextual understanding, specifically tailored for Malaysian English. We have fine-tuned MENmBERT and MENBERT using manually annotated entities and relations from the Malaysian English News Article (MEN) Dataset. This fine-tuning process allows the PLM to learn representations that capture the nuances of Malaysian English relevant for NER and RE tasks. MENmBERT achieved a 1.52\% and 26.27\% improvement on NER and RE tasks respectively compared to the bert-base-multilingual-cased model. Although the overall performance of NER does not have a significant improvement, our further analysis shows that there is a significant improvement when evaluated by the 12 entity labels. These findings suggest that pre-training language models on language-specific and geographically-focused corpora can be a promising approach for improving NER performance in low-resource settings. The dataset and code published in this paper provide valuable resources for NLP research work focusing on Malaysian English.
Abstract:The effectiveness of Large Language Models (LLMs) in legal reasoning is often limited due to the unique legal terminologies and the necessity for highly specialized knowledge. These limitations highlight the need for high-quality data tailored for complex legal reasoning tasks. This paper introduces LEGALSEMI, a benchmark specifically curated for legal scenario analysis. LEGALSEMI comprises 54 legal scenarios, each rigorously annotated by legal experts, based on the comprehensive IRAC (Issue, Rule, Application, Conclusion) framework. In addition, LEGALSEMI is accompanied by a structured knowledge graph (SKG). A series of experiments were conducted to assess the usefulness of LEGALSEMI for IRAC analysis. The experimental results demonstrate the effectiveness of incorporating the SKG for issue identification, rule retrieval, application and conclusion generation using four different LLMs. LEGALSEMI will be publicly available upon acceptance of this paper.
Abstract:Standard English and Malaysian English exhibit notable differences, posing challenges for natural language processing (NLP) tasks on Malaysian English. Unfortunately, most of the existing datasets are mainly based on standard English and therefore inadequate for improving NLP tasks in Malaysian English. An experiment using state-of-the-art Named Entity Recognition (NER) solutions on Malaysian English news articles highlights that they cannot handle morphosyntactic variations in Malaysian English. To the best of our knowledge, there is no annotated dataset available to improvise the model. To address these issues, we constructed a Malaysian English News (MEN) dataset, which contains 200 news articles that are manually annotated with entities and relations. We then fine-tuned the spaCy NER tool and validated that having a dataset tailor-made for Malaysian English could improve the performance of NER in Malaysian English significantly. This paper presents our effort in the data acquisition, annotation methodology, and thorough analysis of the annotated dataset. To validate the quality of the annotation, inter-annotator agreement was used, followed by adjudication of disagreements by a subject matter expert. Upon completion of these tasks, we managed to develop a dataset with 6,061 entities and 3,268 relation instances. Finally, we discuss on spaCy fine-tuning setup and analysis on the NER performance. This unique dataset will contribute significantly to the advancement of NLP research in Malaysian English, allowing researchers to accelerate their progress, particularly in NER and relation extraction. The dataset and annotation guideline has been published on Github.
Abstract:Norm violations occur when individuals fail to conform to culturally accepted behaviors, which may lead to potential conflicts. Remediating norm violations requires social awareness and cultural sensitivity of the nuances at play. To equip interactive AI systems with a remediation ability, we offer ReNoVi - a large-scale corpus of 9,258 multi-turn dialogues annotated with social norms, as well as define a sequence of tasks to help understand and remediate norm violations step by step. ReNoVi consists of two parts: 512 human-authored dialogues (real data), and 8,746 synthetic conversations generated by ChatGPT through prompt learning. While collecting sufficient human-authored data is costly, synthetic conversations provide suitable amounts of data to help mitigate the scarcity of training data, as well as the chance to assess the alignment between LLMs and humans in the awareness of social norms. We thus harness the power of ChatGPT to generate synthetic training data for our task. To ensure the quality of both human-authored and synthetic data, we follow a quality control protocol during data collection. Our experimental results demonstrate the importance of remediating norm violations in socio-cultural conversations, as well as the improvement in performance obtained from synthetic data.
Abstract:Recently, ChatGPT has attracted a lot of interest from both researchers and the general public. While the performance of ChatGPT in named entity recognition and relation extraction from Standard English texts is satisfactory, it remains to be seen if it can perform similarly for Malaysian English. Malaysian English is unique as it exhibits morphosyntactic and semantical adaptation from local contexts. In this study, we assess ChatGPT's capability in extracting entities and relations from the Malaysian English News (MEN) dataset. We propose a three-step methodology referred to as \textbf{\textit{educate-predict-evaluate}}. The performance of ChatGPT is assessed using F1-Score across 18 unique prompt settings, which were carefully engineered for a comprehensive review. From our evaluation, we found that ChatGPT does not perform well in extracting entities from Malaysian English news articles, with the highest F1-Score of 0.497. Further analysis shows that the morphosyntactic adaptation in Malaysian English caused the limitation. However, interestingly, this morphosyntactic adaptation does not impact the performance of ChatGPT for relation extraction.
Abstract:Large Language Models (LLMs), such as ChatGPT, have drawn a lot of attentions recently in the legal domain due to its emergent ability to tackle a variety of legal tasks. However, it is still unknown if LLMs are able to analyze a legal case and perform reasoning in the same manner as lawyers. Therefore, we constructed a novel corpus consisting of scenarios pertain to Contract Acts Malaysia and Australian Social Act for Dependent Child. ChatGPT is applied to perform analysis on the corpus using the IRAC method, which is a framework widely used by legal professionals for organizing legal analysis. Each scenario in the corpus is annotated with a complete IRAC analysis in a semi-structured format so that both machines and legal professionals are able to interpret and understand the annotations. In addition, we conducted the first empirical assessment of ChatGPT for IRAC analysis in order to understand how well it aligns with the analysis of legal professionals. Our experimental results shed lights on possible future research directions to improve alignments between LLMs and legal experts in terms of legal reasoning.
Abstract:Dialogue systems have been widely applied in many scenarios and are now more powerful and ubiquitous than ever before. With large neural models and massive available data, current dialogue systems have access to more knowledge than any people in their life. However, current dialogue systems still do not perform at a human level. One major gap between conversational agents and humans lies in their abilities to be aware of social norms. The development of socially-aware dialogue systems is impeded due to the lack of resources. In this paper, we present the first socially-aware dialogue corpus - SocialDial, based on Chinese social culture. SocialDial consists of two parts: 1,563 multi-turn dialogues between two human speakers with fine-grained labels, and 4,870 synthetic conversations generated by ChatGPT. The human corpus covers five categories of social norms, which have 14 sub-categories in total. Specifically, it contains social factor annotations including social relation, context, social distance, and social norms. However, collecting sufficient socially-aware dialogues is costly. Thus, we harness the power of ChatGPT and devise an ontology-based synthetic data generation framework. This framework is able to generate synthetic data at scale. To ensure the quality of synthetic dialogues, we design several mechanisms for quality control during data collection. Finally, we evaluate our dataset using several pre-trained models, such as BERT and RoBERTa. Comprehensive empirical results based on state-of-the-art neural models demonstrate that modeling of social norms for dialogue systems is a promising research direction. To the best of our knowledge, SocialDial is the first socially-aware dialogue dataset that covers multiple social factors and has fine-grained labels.
Abstract:One of the challenges in event extraction via traditional supervised learning paradigm is the need for a sizeable annotated dataset to achieve satisfactory model performance. It is even more challenging when it comes to event extraction in the finance and economics domain, a domain with considerably fewer resources. This paper presents a complete framework for extracting and processing crude oil-related events found in CrudeOilNews corpus, addressing the issue of annotation scarcity and class imbalance by leveraging on the effectiveness of transfer learning. Apart from event extraction, we place special emphasis on event properties (Polarity, Modality, and Intensity) classification to determine the factual certainty of each event. We build baseline models first by supervised learning and then exploit Transfer Learning methods to boost event extraction model performance despite the limited amount of annotated data and severe class imbalance. This is done via methods within the transfer learning framework such as Domain Adaptive Pre-training, Multi-task Learning and Sequential Transfer Learning. Based on experiment results, we are able to improve all event extraction sub-task models both in F1 and MCC1-score as compared to baseline models trained via the standard supervised learning. Accurate and holistic event extraction from crude oil news is very useful for downstream tasks such as understanding event chains and learning event-event relations, which can be used for other downstream tasks such as commodity price prediction, summarisation, etc. to support a wide range of business decision making.
Abstract:In this paper, we present CrudeOilNews, a corpus of English Crude Oil news for event extraction. It is the first of its kind for Commodity News and serve to contribute towards resource building for economic and financial text mining. This paper describes the data collection process, the annotation methodology and the event typology used in producing the corpus. Firstly, a seed set of 175 news articles were manually annotated, of which a subset of 25 news were used as the adjudicated reference test set for inter-annotator and system evaluation. Agreement was generally substantial and annotator performance was adequate, indicating that the annotation scheme produces consistent event annotations of high quality. Subsequently the dataset is expanded through (1) data augmentation and (2) Human-in-the-loop active learning. The resulting corpus has 425 news articles with approximately 11k events annotated. As part of active learning process, the corpus was used to train basic event extraction models for machine labeling, the resulting models also serve as a validation or as a pilot study demonstrating the use of the corpus in machine learning purposes. The annotated corpus is made available for academic research purpose at https://github.com/meisin/CrudeOilNews-Corpus.
Abstract:Event extraction in commodity news is a less researched area as compared to generic event extraction. However, accurate event extraction from commodity news is useful in abroad range of applications such as under-standing event chains and learning event-event relations, which can then be used for commodity price prediction. The events found in commodity news exhibit characteristics different from generic events, hence posing a unique challenge in event extraction using existing methods. This paper proposes an effective use of Graph Convolutional Networks(GCN) with a pruned dependency parse tree, termed contextual sub-tree, for better event ex-traction in commodity news. The event ex-traction model is trained using feature embed-dings from ComBERT, a BERT-based masked language model that was produced through domain-adaptive pre-training on a commodity news corpus. Experimental results show the efficiency of the proposed solution, which out-performs existing methods with F1 scores as high as 0.90. Furthermore, our pre-trained language model outperforms GloVe by 23%, and BERT and RoBERTa by 7% in terms of argument roles classification. For the goal of re-producibility, the code and trained models are made publicly available1.