Abstract:Diffusion models excel in generating high-quality images. However, current diffusion models struggle to produce reliable images without guidance methods, such as classifier-free guidance (CFG). Are guidance methods truly necessary? Observing that noise obtained via diffusion inversion can reconstruct high-quality images without guidance, we focus on the initial noise of the denoising pipeline. By mapping Gaussian noise to `guidance-free noise', we uncover that small low-magnitude low-frequency components significantly enhance the denoising process, removing the need for guidance and thus improving both inference throughput and memory. Expanding on this, we propose \ours, a novel method that replaces guidance methods with a single refinement of the initial noise. This refined noise enables high-quality image generation without guidance, within the same diffusion pipeline. Our noise-refining model leverages efficient noise-space learning, achieving rapid convergence and strong performance with just 50K text-image pairs. We validate its effectiveness across diverse metrics and analyze how refined noise can eliminate the need for guidance. See our project page: https://cvlab-kaist.github.io/NoiseRefine/.
Abstract:Multi frame super-resolution(MFSR) achieves higher performance than single image super-resolution (SISR), because MFSR leverages abundant information from multiple frames. Recent MFSR approaches adapt the deformable convolution network (DCN) to align the frames. However, the existing MFSR suffers from misalignments between the reference and source frames due to the limitations of DCN, such as small receptive fields and the predefined number of kernels. From these problems, existing MFSR approaches struggle to represent high-frequency information. To this end, we propose Deep Burst Multi-scale SR using Fourier Space with Optical Flow (BurstM). The proposed method estimates the optical flow offset for accurate alignment and predicts the continuous Fourier coefficient of each frame for representing high-frequency textures. In addition, we have enhanced the network flexibility by supporting various super-resolution (SR) scale factors with the unimodel. We demonstrate that our method has the highest performance and flexibility than the existing MFSR methods. Our source code is available at https://github.com/Egkang-Luis/burstm
Abstract:We propose a practical approach to JPEG image decoding, utilizing a local implicit neural representation with continuous cosine formulation. The JPEG algorithm significantly quantizes discrete cosine transform (DCT) spectra to achieve a high compression rate, inevitably resulting in quality degradation while encoding an image. We have designed a continuous cosine spectrum estimator to address the quality degradation issue that restores the distorted spectrum. By leveraging local DCT formulations, our network has the privilege to exploit dequantization and upsampling simultaneously. Our proposed model enables decoding compressed images directly across different quality factors using a single pre-trained model without relying on a conventional JPEG decoder. As a result, our proposed network achieves state-of-the-art performance in flexible color image JPEG artifact removal tasks. Our source code is available at https://github.com/WooKyoungHan/JDEC.
Abstract:Recent studies have demonstrated that diffusion models are capable of generating high-quality samples, but their quality heavily depends on sampling guidance techniques, such as classifier guidance (CG) and classifier-free guidance (CFG). These techniques are often not applicable in unconditional generation or in various downstream tasks such as image restoration. In this paper, we propose a novel sampling guidance, called Perturbed-Attention Guidance (PAG), which improves diffusion sample quality across both unconditional and conditional settings, achieving this without requiring additional training or the integration of external modules. PAG is designed to progressively enhance the structure of samples throughout the denoising process. It involves generating intermediate samples with degraded structure by substituting selected self-attention maps in diffusion U-Net with an identity matrix, by considering the self-attention mechanisms' ability to capture structural information, and guiding the denoising process away from these degraded samples. In both ADM and Stable Diffusion, PAG surprisingly improves sample quality in conditional and even unconditional scenarios. Moreover, PAG significantly improves the baseline performance in various downstream tasks where existing guidances such as CG or CFG cannot be fully utilized, including ControlNet with empty prompts and image restoration such as inpainting and deblurring.
Abstract:A recent sensor fusion in a Bird's Eye View (BEV) space has shown its utility in various tasks such as 3D detection, map segmentation, etc. However, the approach struggles with inaccurate camera BEV estimation, and a perception of distant areas due to the sparsity of LiDAR points. In this paper, we propose a broad BEV fusion (BroadBEV) that addresses the problems with a spatial synchronization approach of cross-modality. Our strategy aims to enhance camera BEV estimation for a broad-sighted perception while simultaneously improving the completion of LiDAR's sparsity in the entire BEV space. Toward that end, we devise Point-scattering that scatters LiDAR BEV distribution to camera depth distribution. The method boosts the learning of depth estimation of the camera branch and induces accurate location of dense camera features in BEV space. For an effective BEV fusion between the spatially synchronized features, we suggest ColFusion that applies self-attention weights of LiDAR and camera BEV features to each other. Our extensive experiments demonstrate that BroadBEV provides a broad-sighted BEV perception with remarkable performance gains.
Abstract:Existing frameworks for image stitching often provide visually reasonable stitchings. However, they suffer from blurry artifacts and disparities in illumination, depth level, etc. Although the recent learning-based stitchings relax such disparities, the required methods impose sacrifice of image qualities failing to capture high-frequency details for stitched images. To address the problem, we propose a novel approach, implicit Neural Image Stitching (NIS) that extends arbitrary-scale super-resolution. Our method estimates Fourier coefficients of images for quality-enhancing warps. Then, the suggested model blends color mismatches and misalignment in the latent space and decodes the features into RGB values of stitched images. Our experiments show that our approach achieves improvement in resolving the low-definition imaging of the previous deep image stitching with favorable accelerated image-enhancing methods. Our source code is available at https://github.com/minshu-kim/NIS.
Abstract:Trendy suggestions for learning-based elastic warps enable the deep image stitchings to align images exposed to large parallax errors. Despite the remarkable alignments, the methods struggle with occasional holes or discontinuity between overlapping and non-overlapping regions of a target image as the applied training strategy mostly focuses on overlap region alignment. As a result, they require additional modules such as seam finder and image inpainting for hiding discontinuity and filling holes, respectively. In this work, we suggest Recurrent Elastic Warps (REwarp) that address the problem with Dirichlet boundary condition and boost performances by residual learning for recurrent misalign correction. Specifically, REwarp predicts a homography and a Thin-plate Spline (TPS) under the boundary constraint for discontinuity and hole-free image stitching. Our experiments show the favorable aligns and the competitive computational costs of REwarp compared to the existing stitching methods. Our source code is available at https://github.com/minshu-kim/REwarp.
Abstract:Image warping aims to reshape images defined on rectangular grids into arbitrary shapes. Recently, implicit neural functions have shown remarkable performances in representing images in a continuous manner. However, a standalone multi-layer perceptron suffers from learning high-frequency Fourier coefficients. In this paper, we propose a local texture estimator for image warping (LTEW) followed by an implicit neural representation to deform images into continuous shapes. Local textures estimated from a deep super-resolution (SR) backbone are multiplied by locally-varying Jacobian matrices of a coordinate transformation to predict Fourier responses of a warped image. Our LTEW-based neural function outperforms existing warping methods for asymmetric-scale SR and homography transform. Furthermore, our algorithm well generalizes arbitrary coordinate transformations, such as homography transform with a large magnification factor and equirectangular projection (ERP) perspective transform, which are not provided in training.
Abstract:Recent works with an implicit neural function shed light on representing images in arbitrary resolution. However, a standalone multi-layer perceptron (MLP) shows limited performance in learning high-frequency components. In this paper, we propose a Local Texture Estimator (LTE), a dominant-frequency estimator for natural images, enabling an implicit function to capture fine details while reconstructing images in a continuous manner. When jointly trained with a deep super-resolution (SR) architecture, LTE is capable of characterizing image textures in 2D Fourier space. We show that an LTE-based neural function outperforms existing deep SR methods within an arbitrary-scale for all datasets and all scale factors. Furthermore, we demonstrate that our implementation takes the shortest running time compared to previous works. Source code will be open.
Abstract:We aim to reduce the tedious nature of developing and evaluating methods for aligning PET-CT scans from multiple patient visits. Current methods for registration rely on correspondences that are created manually by medical experts with 3D manipulation, or assisted alignments done by utilizing mutual information across CT scans that may not be consistent when transferred to the PET images. Instead, we propose to label multiple key points across several 2D slices, which we then fit a key curve to. This removes the need for creating manual alignments in 3D and makes the labelling process easier. We use these key curves to define an error metric for the alignments that can be computed efficiently. While our metric is non-differentiable, we further show that we can utilize it during the training of our deep model via a novel method. Specifically, instead of relying on detailed geometric labels -- e.g., manual 3D alignments -- we use synthetically generated deformations of real data. To incorporate robustness to changes that occur between visits other than geometric changes, we enforce consistency across visits in the deep network's internal representations. We demonstrate the potential of our method via qualitative and quantitative experiments.