Abstract:While pruning methods effectively maintain model performance without extra training costs, they often focus solely on preserving crucial connections, overlooking the impact of pruned weights on subsequent fine-tuning or distillation, leading to inefficiencies. Moreover, most compression techniques for generative models have been developed primarily for GANs, tailored to specific architectures like StyleGAN, and research into compressing Diffusion models has just begun. Even more, these methods are often applicable only to GANs or Diffusion models, highlighting the need for approaches that work across both model types. In this paper, we introduce Singular Value Scaling (SVS), a versatile technique for refining pruned weights, applicable to both model types. Our analysis reveals that pruned weights often exhibit dominant singular vectors, hindering fine-tuning efficiency and leading to suboptimal performance compared to random initialization. Our method enhances weight initialization by minimizing the disparities between singular values of pruned weights, thereby improving the fine-tuning process. This approach not only guides the compressed model toward superior solutions but also significantly speeds up fine-tuning. Extensive experiments on StyleGAN2, StyleGAN3 and DDPM demonstrate that SVS improves compression performance across model types without additional training costs. Our code is available at: https://github.com/LAIT-CVLab/Singular-Value-Scaling.
Abstract:This paper presents a novel method for utilizing fine-tuned Large Language Models (LLMs) to minimize data requirements in load profile analysis, demonstrated through the restoration of missing data in power system load profiles. A two-stage fine-tuning strategy is proposed to adapt a pre-trained LLMs, i.e., GPT-3.5, for missing data restoration tasks. Through empirical evaluation, we demonstrate the effectiveness of the fine-tuned model in accurately restoring missing data, achieving comparable performance to state-of-the-art specifically designed models such as BERT-PIN. Key findings include the importance of prompt engineering and the optimal utilization of fine-tuning samples, highlighting the efficiency of few-shot learning in transferring knowledge from general user cases to specific target users. Furthermore, the proposed approach demonstrates notable cost-effectiveness and time efficiency compared to training models from scratch, making it a practical solution for scenarios with limited data availability and computing resources. This research has significant potential for application to other power system load profile analysis tasks. Consequently, it advances the use of LLMs in power system analytics, offering promising implications for enhancing the resilience and efficiency of power distribution systems.
Abstract:Inspired by the success of the Transformer model in natural language processing and computer vision, this paper introduces BERT-PIN, a Bidirectional Encoder Representations from Transformers (BERT) powered Profile Inpainting Network. BERT-PIN recovers multiple missing data segments (MDSs) using load and temperature time-series profiles as inputs. To adopt a standard Transformer model structure for profile inpainting, we segment the load and temperature profiles into line segments, treating each segment as a word and the entire profile as a sentence. We incorporate a top candidates selection process in BERT-PIN, enabling it to produce a sequence of probability distributions, based on which users can generate multiple plausible imputed data sets, each reflecting different confidence levels. We develop and evaluate BERT-PIN using real-world dataset for two applications: multiple MDSs recovery and demand response baseline estimation. Simulation results show that BERT-PIN outperforms the existing methods in accuracy while is capable of restoring multiple MDSs within a longer window. BERT-PIN, served as a pre-trained model, can be fine-tuned for conducting many downstream tasks, such as classification and super resolution.