Abstract:Enhancing low-resolution, low-frame-rate videos to high-resolution, high-frame-rate quality is essential for a seamless user experience, motivating advancements in Continuous Spatial-Temporal Video Super Resolution (C-STVSR). While prior methods employ Implicit Neural Representation (INR) for continuous encoding, they often struggle to capture the complexity of video data, relying on simple coordinate concatenation and pre-trained optical flow network for motion representation. Interestingly, we find that adding position encoding, contrary to common observations, does not improve-and even degrade performance. This issue becomes particularly pronounced when combined with pre-trained optical flow networks, which can limit the model's flexibility. To address these issues, we propose BF-STVSR, a C-STVSR framework with two key modules tailored to better represent spatial and temporal characteristics of video: 1) B-spline Mapper for smooth temporal interpolation, and 2) Fourier Mapper for capturing dominant spatial frequencies. Our approach achieves state-of-the-art PSNR and SSIM performance, showing enhanced spatial details and natural temporal consistency.
Abstract:Recently, diabetic retinopathy (DR) screening utilizing ultra-wide optical coherence tomography angiography (UW-OCTA) has been used in clinical practices to detect signs of early DR. However, developing a deep learning-based DR analysis system using UW-OCTA images is not trivial due to the difficulty of data collection and the absence of public datasets. By realistic constraints, a model trained on small datasets may obtain sub-par performance. Therefore, to help ophthalmologists be less confused about models' incorrect decisions, the models should be robust even in data scarcity settings. To address the above practical challenging, we present a comprehensive empirical study for DR analysis tasks, including lesion segmentation, image quality assessment, and DR grading. For each task, we introduce a robust training scheme by leveraging ensemble learning, data augmentation, and semi-supervised learning. Furthermore, we propose reliable pseudo labeling that excludes uncertain pseudo-labels based on the model's confidence scores to reduce the negative effect of noisy pseudo-labels. By exploiting the proposed approaches, we achieved 1st place in the Diabetic Retinopathy Analysis Challenge.
Abstract:The goal of transfer learning (TL) is providing a framework for exploiting acquired knowledge from source to target data. Transfer learning approaches compared to traditional machine learning approaches are capable of modeling better data patterns from the current domain. However, vanilla TL needs performance improvements by using computational intelligence-based TL. This paper studies computational intelligence-based transfer learning techniques and categorizes them into neural network-based, evolutionary algorithm-based, swarm intelligence-based and fuzzy logic-based transfer learning.
Abstract:Relational representation of knowledge makes it possible to perform all the computations and decision making in a uniform relational way by means of special relational compositions called triangle and square products. In this paper some applications in manufacturing related to cost analysis are described. Testing fuzzy relational structures for various relational properties allows us to discover dependencies, hierarchies, similarities, and equivalences of the attributes characterizing technological processes and manufactured artifacts in their relationship to costs and performance. A brief overview of mathematical aspects of BK-relational products is given in Appendix 1 together with further references in the literature.