Abstract:Curriculum learning is a training mechanism in reinforcement learning (RL) that facilitates the achievement of complex policies by progressively increasing the task difficulty during training. However, designing effective curricula for a specific task often requires extensive domain knowledge and human intervention, which limits its applicability across various domains. Our core idea is that large language models (LLMs), with their extensive training on diverse language data and ability to encapsulate world knowledge, present significant potential for efficiently breaking down tasks and decomposing skills across various robotics environments. Additionally, the demonstrated success of LLMs in translating natural language into executable code for RL agents strengthens their role in generating task curricula. In this work, we propose CurricuLLM, which leverages the high-level planning and programming capabilities of LLMs for curriculum design, thereby enhancing the efficient learning of complex target tasks. CurricuLLM consists of: (Step 1) Generating sequence of subtasks that aid target task learning in natural language form, (Step 2) Translating natural language description of subtasks in executable task code, including the reward code and goal distribution code, and (Step 3) Evaluating trained policies based on trajectory rollout and subtask description. We evaluate CurricuLLM in various robotics simulation environments, ranging from manipulation, navigation, and locomotion, to show that CurricuLLM can aid learning complex robot control tasks. In addition, we validate humanoid locomotion policy learned through CurricuLLM in real-world. The code is provided in https://github.com/labicon/CurricuLLM
Abstract:Learning from Demonstration (LfD) can be an efficient way to train systems with analogous agents by enabling ``Student'' agents to learn from the demonstrations of the most experienced ``Teacher'' agent, instead of training their policy in parallel. However, when there are discrepancies in agent capabilities, such as divergent actuator power or joint angle constraints, naively replicating demonstrations that are out of bounds for the Student's capability can limit efficient learning. We present a Teacher-Student learning framework specifically tailored to address the challenge of heterogeneity between the Teacher and Student agents. Our framework is based on the concept of ``surprise'', inspired by its application in exploration incentivization in sparse-reward environments. Surprise is repurposed to enable the Teacher to detect and adapt to differences between itself and the Student. By focusing on maximizing its surprise in response to the environment while concurrently minimizing the Student's surprise in response to the demonstrations, the Teacher agent can effectively tailor its demonstrations to the Student's specific capabilities and constraints. We validate our method by demonstrating improvements in the Student's learning in control tasks within sparse-reward environments.
Abstract:Ensuring safe navigation in human-populated environments is crucial for autonomous mobile robots. Although recent advances in machine learning offer promising methods to predict human trajectories in crowded areas, it remains unclear how one can safely incorporate these learned models into a control loop due to the uncertain nature of human motion, which can make predictions of these models imprecise. In this work, we address this challenge and introduce a distributionally robust chance-constrained model predictive control (DRCC-MPC) which: (i) adopts a probability of collision as a pre-specified, interpretable risk metric, and (ii) offers robustness against discrepancies between actual human trajectories and their predictions. We consider the risk of collision in the form of a chance constraint, providing an interpretable measure of robot safety. To enable real-time evaluation of chance constraints, we consider conservative approximations of chance constraints in the form of distributionally robust Conditional Value at Risk constraints. The resulting formulation offers computational efficiency as well as robustness with respect to out-of-distribution human motion. With the parallelization of a sampling-based optimization technique, our method operates in real-time, demonstrating successful and safe navigation in a number of case studies with real-world pedestrian data.
Abstract:International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from these competitions. Do they really generate scientific progress? What are common and successful participation strategies? What makes a solution superior to a competing method? To address this gap in the literature, we performed a multi-center study with all 80 competitions that were conducted in the scope of IEEE ISBI 2021 and MICCAI 2021. Statistical analyses performed based on comprehensive descriptions of the submitted algorithms linked to their rank as well as the underlying participation strategies revealed common characteristics of winning solutions. These typically include the use of multi-task learning (63%) and/or multi-stage pipelines (61%), and a focus on augmentation (100%), image preprocessing (97%), data curation (79%), and postprocessing (66%). The "typical" lead of a winning team is a computer scientist with a doctoral degree, five years of experience in biomedical image analysis, and four years of experience in deep learning. Two core general development strategies stood out for highly-ranked teams: the reflection of the metrics in the method design and the focus on analyzing and handling failure cases. According to the organizers, 43% of the winning algorithms exceeded the state of the art but only 11% completely solved the respective domain problem. The insights of our study could help researchers (1) improve algorithm development strategies when approaching new problems, and (2) focus on open research questions revealed by this work.
Abstract:The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.