Ensuring safe navigation in human-populated environments is crucial for autonomous mobile robots. Although recent advances in machine learning offer promising methods to predict human trajectories in crowded areas, it remains unclear how one can safely incorporate these learned models into a control loop due to the uncertain nature of human motion, which can make predictions of these models imprecise. In this work, we address this challenge and introduce a distributionally robust chance-constrained model predictive control (DRCC-MPC) which: (i) adopts a probability of collision as a pre-specified, interpretable risk metric, and (ii) offers robustness against discrepancies between actual human trajectories and their predictions. We consider the risk of collision in the form of a chance constraint, providing an interpretable measure of robot safety. To enable real-time evaluation of chance constraints, we consider conservative approximations of chance constraints in the form of distributionally robust Conditional Value at Risk constraints. The resulting formulation offers computational efficiency as well as robustness with respect to out-of-distribution human motion. With the parallelization of a sampling-based optimization technique, our method operates in real-time, demonstrating successful and safe navigation in a number of case studies with real-world pedestrian data.