Abstract:Robotic-assistive therapy has demonstrated very encouraging results for children with Autism. Accurate estimation of the child's pose is essential both for human-robot interaction and for therapy assessment purposes. Non-intrusive methods are the sole viable option since these children are sensitive to touch. While depth cameras have been used extensively, existing methods face two major limitations: (i) they are usually trained with adult-only data and do not correctly estimate a child's pose, and (ii) they fail in scenarios with a high number of occlusions. Therefore, our goal was to develop a 3D pose estimator for children, by adapting an existing state-of-the-art 3D body modelling method and incorporating a linear regression model to fine-tune one of its inputs, thereby correcting the pose of children's 3D meshes. In controlled settings, our method has an error below $0.3m$, which is considered acceptable for this kind of application and lower than current state-of-the-art methods. In real-world settings, the proposed model performs similarly to a Kinect depth camera and manages to successfully estimate the 3D body poses in a much higher number of frames.
Abstract:Affordances are fundamental descriptors of relationships between actions, objects and effects. They provide the means whereby a robot can predict effects, recognize actions, select objects and plan its behavior according to desired goals. This paper approaches the problem of an embodied agent exploring the world and learning these affordances autonomously from its sensory experiences. Models exist for learning the structure and the parameters of a Bayesian Network encoding this knowledge. Although Bayesian Networks are capable of dealing with uncertainty and redundancy, previous work considered complete observability of the discrete sensory data, which may lead to hard errors in the presence of noise. In this paper we consider a probabilistic representation of the sensors by Gaussian Mixture Models (GMMs) and explicitly taking into account the probability distribution contained in each discrete affordance concept, which can lead to a more correct learning.
Abstract:Implicit communication plays such a crucial role during social exchanges that it must be considered for a good experience in human-robot interaction. This work addresses implicit communication associated with the detection of physical properties, transport, and manipulation of objects. We propose an ecological approach to infer object characteristics from subtle modulations of the natural kinematics occurring during human object manipulation. Similarly, we take inspiration from human strategies to shape robot movements to be communicative of the object properties while pursuing the action goals. In a realistic HRI scenario, participants handed over cups - filled with water or empty - to a robotic manipulator that sorted them. We implemented an online classifier to differentiate careful/not careful human movements, associated with the cups' content. We compared our proposed "expressive" controller, which modulates the movements according to the cup filling, against a neutral motion controller. Results show that human kinematics is adjusted during the task, as a function of the cup content, even in reach-to-grasp motion. Moreover, the carefulness during the handover of full cups can be reliably inferred online, well before action completion. Finally, although questionnaires did not reveal explicit preferences from participants, the expressive robot condition improved task efficiency.
Abstract:As humans, we have a remarkable capacity for reading the characteristics of objects only by observing how another person carries them. Indeed, how we perform our actions naturally embeds information on the item features. Collaborative robots can achieve the same ability by modulating the strategy used to transport objects with their end-effector. A contribution in this sense would promote spontaneous interactions by making an implicit yet effective communication channel available. This work investigates if humans correctly perceive the implicit information shared by a robotic manipulator through its movements during a dyadic collaboration task. Exploiting a generative approach, we designed robot actions to convey virtual properties of the transported objects, particularly to inform the partner if any caution is required to handle the carried item. We found that carefulness is correctly interpreted when observed through the robot movements. In the experiment, we used identical empty plastic cups; nevertheless, participants approached them differently depending on the attitude shown by the robot: humans change how they reach for the object, being more careful whenever the robot does the same. This emerging form of motor contagion is entirely spontaneous and happens even if the task does not require it.
Abstract:We address the unsolved task of robotic bin packing with irregular objects, such as groceries, where the underlying constraints on object placement and manipulation, and the diverse objects' physical properties make preprogrammed strategies unfeasible. Our approach is to learn directly from expert demonstrations in order to extract implicit task knowledge and strategies to achieve an efficient space usage, safe object positioning and to generate human-like behaviors that enhance human-robot trust. We collect and make available a novel and diverse dataset, BoxED, of box packing demonstrations by humans in virtual reality. In total, 263 boxes were packed with supermarket-like objects by 43 participants, yielding 4644 object manipulations. We use the BoxED dataset to learn a Markov chain to predict the object packing sequence for a given set of objects and compare it with human performance. Our experimental results show that the model surpasses human performance by generating sequence predictions that humans classify as human-like more frequently than human-generated sequences.
Abstract:Soft robotics is a thriving branch of robotics which takes inspiration from nature and uses affordable flexible materials to design adaptable non-rigid robots. However, their flexible behavior makes these robots hard to model, which is essential for a precise actuation and for optimal control. For system modelling, learning-based approaches have demonstrated good results, yet they fail to consider the physical structure underlying the system as an inductive prior. In this work, we take inspiration from sensorimotor learning, and apply a Graph Neural Network to the problem of modelling a non-rigid kinematic chain (i.e. a robotic soft hand) taking advantage of two key properties: 1) the system is compositional, that is, it is composed of simple interacting parts connected by edges, 2) it is order invariant, i.e. only the structure of the system is relevant for predicting future trajectories. We denote our model as the 'Sensorimotor Graph' since it learns the system connectivity from observation and uses it for dynamics prediction. We validate our model in different scenarios and show that it outperforms the non-structured baselines in dynamics prediction while being more robust to configurational variations, tracking errors or node failures.
Abstract:A defining characteristic of intelligent systems is the ability to make action decisions based on the anticipated outcomes. Video prediction systems have been demonstrated as a solution for predicting how the future will unfold visually, and thus, many models have been proposed that are capable of predicting future frames based on a history of observed frames~(and sometimes robot actions). However, a comprehensive method for determining the fitness of different video prediction models at guiding the selection of actions is yet to be developed. Current metrics assess video prediction models based on human perception of frame quality. In contrast, we argue that if these systems are to be used to guide action, necessarily, the actions the robot performs should be encoded in the predicted frames. In this paper, we are proposing a new metric to compare different video prediction models based on this argument. More specifically, we propose an action inference system and quantitatively rank different models based on how well we can infer the robot actions from the predicted frames. Our extensive experiments show that models with high perceptual scores can perform poorly in the proposed action inference tests and thus, may not be suitable options to be used in robot planning systems.
Abstract:For effectively interacting with humans in collaborative environments, machines need to be able anticipate future events, in order to execute actions in a timely manner. However, the observation of the human limbs movements may not be sufficient to anticipate their actions in an unambiguous manner. In this work we consider two additional sources of information (i.e. context) over time, gaze movements and object information, and study how these additional contextual cues improve the action anticipation performance. We address action anticipation as a classification task, where the model takes the available information as the input, and predicts the most likely action. We propose to use the uncertainty about each prediction as an online decision-making criterion for action anticipation. Uncertainty is modeled as a stochastic process applied to a time-based neural network architecture, which improves the conventional class-likelihood (i.e. deterministic) criterion. The main contributions of this paper are three-fold: (i) we propose a deep architecture that outperforms previous results in the action anticipation task; (ii) we show that contextual information is important do disambiguate the interpretation of similar actions; (iii) we propose the minimization of uncertainty as a more effective criterion for action anticipation, when compared with the maximization of class probability. Our results on the Acticipate dataset showed the importance of contextual information and the uncertainty criterion for action anticipation. We achieve an average accuracy of 98.75% in the anticipation task using only an average of 25% of observations. In addition, considering that a good anticipation model should also perform well in the action recognition task, we achieve an average accuracy of 100% in action recognition on the Acticipate dataset, when the entire observation set is used.
Abstract:Human interaction involves very sophisticated non-verbal communication skills like understanding the goals and actions of others and coordinating our own actions accordingly. Neuroscience refers to this mechanism as motor resonance, in the sense that the perception of another person's actions and sensory experiences activates the observer's brain as if (s)he would be performing the same actions and having the same experiences. We analyze and model non-verbal cues (arm movements) exchanged between two humans that interact and execute handover actions. The contributions of this paper are the following: (i) computational models, using recorded motion data, describing the motor behaviour of each actor in action-in-interaction situations, (ii) a computational model that captures the behaviour if the "giver" and "receiver" during an object handover action, by coupling the arm motion of both actors, and (iii) embedded these models in the iCub robot for both action execution and recognition. Our results show that: (i) the robot can interpret the human arm motion and recognize handover actions; and (ii) behave in a "human-like" manner to receive the object of the recognized handover action.
Abstract:Nowadays, autonomous service robots are becoming an important topic in robotic research. Differently from typical industrial scenarios, with highly controlled environments, service robots must show an additional robustness to task perturbations and changes in the characteristics of their sensory feedback. In this paper a robot is taught to perform two different cleaning tasks over a table, using a learning from demonstration paradigm. However, differently from other approaches, a convolutional neural network is used to generalize the demonstrations to different, not yet seen dirt or stain patterns on the same table using only visual feedback, and to perform cleaning movements accordingly. Robustness to robot posture and illumination changes is achieved using data augmentation techniques and camera images transformation. This robustness allows the transfer of knowledge regarding execution of cleaning tasks between heterogeneous robots operating in different environmental settings. To demonstrate the viability of the proposed approach, a network trained in Lisbon to perform cleaning tasks, using the iCub robot, is successfully employed by the DoRo robot in Peccioli, Italy.