Dept. of Informatics, Bioengineering, Robotics, and Systems Engineering, University of Genoa, Genoa, Italy
Abstract:This article investigates mixed reality (MR) to enhance human-robot collaboration (HRC). The proposed solution adopts MR as a communication layer to convey a mobile manipulator's intentions and upcoming actions to the humans with whom it interacts, thus improving their collaboration. A user study involving 20 participants demonstrated the effectiveness of this MR-focused approach in facilitating collaborative tasks, with a positive effect on overall collaboration performances and human satisfaction.
Abstract:As collaborative robots become more common in manufacturing scenarios and adopted in hybrid human-robot teams, we should develop new interaction and communication strategies to ensure smooth collaboration between agents. In this paper, we propose a novel communicative interface that uses Mixed Reality as a medium to perform Kinesthetic Teaching (KT) on any robotic platform. We evaluate our proposed approach in a user study involving multiple subjects and two different robots, comparing traditional physical KT with holographic-based KT through user experience questionnaires and task-related metrics.
Abstract:We propose a dataset to study the influence of object-specific characteristics on human pick-and-place movements and compare the quality of the motion kinematics extracted by various sensors. This dataset is also suitable for promoting a broader discussion on general learning problems in the hand-object interaction domain, such as intention recognition or motion generation with applications in the Robotics field. The dataset consists of the recordings of 15 subjects performing 80 repetitions of a pick-and-place action under various experimental conditions, for a total of 1200 pick-and-places. The data has been collected thanks to a multimodal setup composed of multiple cameras, observing the actions from different perspectives, a motion capture system, and a wrist-worn inertial measurement unit. All the objects manipulated in the experiments are identical in shape, size, and appearance but differ in weight and liquid filling, which influences the carefulness required for their handling.
Abstract:This paper presents a comprehensive framework to enhance Human-Robot Collaboration (HRC) in real-world scenarios. It introduces a formalism to model articulated tasks, requiring cooperation between two agents, through a smaller set of primitives. Our implementation leverages Hierarchical Task Networks (HTN) planning and a modular multisensory perception pipeline, which includes vision, human activity recognition, and tactile sensing. To showcase the system's scalability, we present an experimental scenario where two humans alternate in collaborating with a Baxter robot to assemble four pieces of furniture with variable components. This integration highlights promising advancements in HRC, suggesting a scalable approach for complex, cooperative tasks across diverse applications.
Abstract:Dexterous in-hand manipulation is a unique and valuable human skill requiring sophisticated sensorimotor interaction with the environment while respecting stability constraints. Satisfying these constraints with generated motions is essential for a robotic platform to achieve reliable in-hand manipulation skills. Explicitly modelling these constraints can be challenging, but they can be implicitly modelled and learned through experience or human demonstrations. We propose a learning and control approach based on dictionaries of motion primitives generated from human demonstrations. To achieve this, we defined an optimization process that combines motion primitives to generate robot fingertip trajectories for moving an object from an initial to a desired final pose. Based on our experiments, our approach allows a robotic hand to handle objects like humans, adhering to stability constraints without requiring explicit formalization. In other words, the proposed motion primitive dictionaries learn and implicitly embed the constraints crucial to the in-hand manipulation task.
Abstract:Hands are a fundamental tool humans use to interact with the environment and objects. Through hand motions, we can obtain information about the shape and materials of the surfaces we touch, modify our surroundings by interacting with objects, manipulate objects and tools, or communicate with other people by leveraging the power of gestures. For these reasons, sensorized gloves, which can collect information about hand motions and interactions, have been of interest since the 1980s in various fields, such as Human-Machine Interaction (HMI) and the analysis and control of human motions. Over the last 40 years, research in this field explored different technological approaches and contributed to the popularity of wearable custom and commercial products targeting hand sensorization. Despite a positive research trend, these instruments are not widespread yet outside research environments and devices aimed at research are often ad hoc solutions with a low chance of being reused. This paper aims to provide a systematic literature review for custom gloves to analyze their main characteristics and critical issues, from the type and number of sensors to the limitations due to device encumbrance. The collection of this information lays the foundation for a standardization process necessary for future breakthroughs in this research field.
Abstract:This work aims to tackle the intent recognition problem in Human-Robot Collaborative assembly scenarios. Precisely, we consider an interactive assembly of a wooden stool where the robot fetches the pieces in the correct order and the human builds the parts following the instruction manual. The intent recognition is limited to the idle state estimation and it is needed to ensure a better synchronization between the two agents. We carried out a comparison between two distinct solutions involving wearable sensors and eye tracking integrated into the perception pipeline of a flexible planning architecture based on Hierarchical Task Networks. At runtime, the wearable sensing module exploits the raw measurements from four 9-axis Inertial Measurement Units positioned on the wrists and hands of the user as an input for a Long Short-Term Memory Network. On the other hand, the eye tracking relies on a Head Mounted Display and Unreal Engine. We tested the effectiveness of the two approaches with 10 participants, each of whom explored both options in alternate order. We collected explicit metrics about the attractiveness and efficiency of the two techniques through User Experience Questionnaires as well as implicit criteria regarding the classification time and the overall assembly time. The results of our work show that the two methods can reach comparable performances both in terms of effectiveness and user preference. Future development could aim at joining the two approaches two allow the recognition of more complex activities and to anticipate the user actions.
Abstract:The paper tackles the issue of mapping logic axioms formalised in the Ontology Web Language (OWL) within the Object-Oriented Programming (OOP) paradigm. The issues of mapping OWL axioms hierarchies and OOP objects hierarchies are due to OWL-based reasoning algorithms, which might change an OWL hierarchy at runtime; instead, OOP hierarchies are usually defined as static structures. Although programming paradigms based on reflection allow changing the OOP hierarchies at runtime and mapping OWL axioms dynamically, there are no currently available mechanisms that do not limit the reasoning algorithms. Thus, the factory-based paradigm is typically used since it decouples the OWL and OOP hierarchies. However, the factory inhibits OOP polymorphism and introduces a paradigm shift with respect to widely accepted OOP paradigms. We present the OWLOOP API, which exploits the factory to not limit reasoning algorithms, and it provides novel OOP interfaces concerning the axioms in an ontology. OWLOOP is designed to limit the paradigm shift required for using ontologies while improving, through OOP-like polymorphism, the modularity of software architectures that exploit logic reasoning. The paper details our OWL to OOP mapping mechanism, and it shows the benefits and limitations of OWLOOP through examples concerning a robot in a smart environment.
Abstract:We present a symbolic learning framework inspired by cognitive-like memory functionalities (i.e., storing, retrieving, consolidating and forgetting) to generate task representations to support high-level task planning and knowledge bootstrapping. We address a scenario involving a non-expert human, who performs a single task demonstration, and a robot, which online learns structured knowledge to re-execute the task based on experiences, i.e., observations. We consider a one-shot learning process based on non-annotated data to store an intelligible representation of the task, which can be refined through interaction, e.g., via verbal or visual communication. Our general-purpose framework relies on fuzzy Description Logic, which has been used to extend the previously developed Scene Identification and Tagging algorithm. In this paper, we exploit such an algorithm to implement cognitive-like memory functionalities employing scores that rank memorised observations over time based on simple heuristics. Our main contribution is the formalisation of a framework that can be used to systematically investigate different heuristics for bootstrapping hierarchical knowledge representations based on robot observations. Through an illustrative assembly task scenario, the paper presents the performance of our framework to discuss its benefits and limitations.
Abstract:We foresee robots that bootstrap knowledge representations and use them for classifying relevant situations and making decisions based on future observations. Particularly for assistive robots, the bootstrapping mechanism might be supervised by humans who should not repeat a training phase several times and should be able to refine the taught representation. We consider robots that bootstrap structured representations to classify some intelligible categories. Such a structure should be incrementally bootstrapped, i.e., without invalidating the identified category models when a new additional category is considered. To tackle this scenario, we presented the Scene Identification and Tagging (SIT) algorithm, which bootstraps structured knowledge representation in a crisp OWL-DL ontology. Over time, SIT bootstraps a graph representing scenes, sub-scenes and similar scenes. Then, SIT can classify new scenes within the bootstrapped graph through logic-based reasoning. However, SIT has issues with sensory data because its crisp implementation is not robust to perception noises. This paper presents a reformulation of SIT within the fuzzy domain, which exploits a fuzzy DL ontology to overcome the robustness issues. By comparing the performances of fuzzy and crisp implementations of SIT, we show that fuzzy SIT is robust, preserves the properties of its crisp formulation, and enhances the bootstrapped representations. On the contrary, the fuzzy implementation of SIT leads to less intelligible knowledge representations than the one bootstrapped in the crisp domain.